CHALLENGES IN ACUTE PANCREATITIS: DIAGNOSIS, ETIOLOGY AND TREATMENT

Ph.D. Thesis

Dóra Mosztbacher M.D.

Szeged

2020

CHALLENGES IN ACUTE PANCREATITIS: DIAGNOSIS, ETIOLOGY AND TREATMENT

Ph.D. Thesis

Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Szeged

Dóra Mosztbacher, M.D.

Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Szeged First Department of Paediatrics, Faculty of Medicine, Semmelweis University, Budapest Institute for Translational Medicine, Medical School, University of Pécs, Pécs

Supervisors:

Péter Hegyi, M.D., Ph.D., D.Sc., MAE

First Department of Medicine, Faculty of Medicine, University of Szeged, Szeged Institute for Translational Medicine, Medical School, University of Pécs, Pécs

Andrea Párniczky, M.D., Ph.D.

Heim Pál National Institute of Paediatrics, Budapest
Institute for Translational Medicine, Medical School, University of Pécs, Pécs
Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Szeged

PUBLICATIONS RELATED TO THE SUBJECT OF THE THESIS

- I. Mosztbacher D, Hanák L, Farkas N, Szentesi A, Mikó A, Bajor J, et al. Hypertriglyceridemia-induced acute pancreatitis: A prospective, multicenter, international cohort analysis of 716 acute pancreatitis cases. Pancreatology. 2020;20(4):608-616. IF: 3.629
- II. Mosztbacher D, Farkas N, Solymár M, Pár G, Bajor J, Szűcs Á, et al. Restoration of energy level in the early phase of acute pediatric pancreatitis. World Journal of Gastroenterology. 2017;23(6):957. IF: 3.3
- III. Zsoldos F, Párniczky A, Mosztbacher D, Tóth A, Lásztity N, Hegyi P. Pain in the early phase of pediatric pancreatitis (PINEAPPLE Trial): pre-study protocol of a multinational prospective clinical trial. Digestion. 2016;93(2):121-6. IF: 2.088

SCIENTIFIC METRICS

Number of publications related to the subject of the thesis:	3 (2 first author)
Cumulative impact factor of publications related to the thesis:	9.017
Q1: 2, Q2: 1, Q3: -, Q4: -	
Number of total accepted/published articles:	14 (4 first author)
Cumulative impact factor of the published articles:	45.799
Q1: 11, Q2: 3, Q3: -, Q4: -	
Number of total citation by Google Scholar:	245
$\underline{https://scholar.google.com/citations?pagesize=100\&user=xvok1ZAAA}$	
AAJ	
Hirsch Index:	9
Number of total citation by MTM2:	106 independent
	161 all
https://m2.mtmt.hu/gui2/?type=authors&mode=browse&sel=10059862	
<u>&view=pubTable2</u>	
Hirsch Index:	8

TABLE OF CONTENTS

I.	List of abbreviations	5
II.	General introduction	7
II.1.	Challenges in acute pancreatitis	7
II.2.	Motivation for my scientific work	8
III.	Dose-dependent effect of hypertriglyceridemia on acute pancreatitis	9
III.1.	Introduction	9
III.2.	Aims	9
III.3.	Methods	9
III.4.	Results	12
III.5.	Discussion	20
III.6.	Conclusion	23
IV.	Children are not small adults	26
IV.1	The PINEAPPLE study	26
IV.1.1.	Introduction	26
IV.1.2.	Aims	27
IV.1.3.	Methods	27
IV.1.4.	Expected results	30
IV.1.5.	Discussion	31
IV.2.	Early enteral nutrition in acute pediatric pancreatitis	32
IV.2.1.	Introduction	32
IV.2.2.	Aims	33
IV.2.3.	Methods	33
IV.2.4.	Results	36
IV.2.5.	Discussion	36
IV.3.	Conclusion	38
V	Summary and new discoveries	39

VI.	Contribution	40
VI.1.	Mosztbacher et al. Pancreatology, 2020	40
VI.2.	Mosztbacher et al. World J Gastroenterol, 2017	40
VI.3.	Zsoldos et al. Digestion, 2016	40
VII.	Acknowledgement	41
VIII.	References	42

I. LIST OF ABBREVIATIONS

AIP	autoimmune pancreatitis
ALAT	alanine transaminase
ALP	alkaline phosphatase
AP	acute pancreatitis
APA	American Pancreatic Association
APP	acute pediatric pancreatitis
ARP	acute recurrent pancreatitis
ASAT	aspartate transaminase
ATP	adenosine triphosphate
BUN	blood urea nitrogen
CFTR	cystic fibrosis transmembrane conductance regulator
CI	confidence interval
СР	chronic pancreatitis
CRP	C-reactive protein
СТ	computed tomography
DM	diabetes mellitus
EBM	evidence-based medicine
EEN	early enteral nutrition
FAEEs	fatty acid ethyl esters
γGT	gamma-glutamyltransferase
HPSG	Hungarian Pancreatic Study Group
HTG	hypertriglyceridemia
HTG-AP	hypertriglyceridemia-induced acute pancreatitis
IAP	International Association of Pancreatology
ICMJE	International Committee of Medical Journal Editors
ICU	intensive care unit
IVF	intravenous fluid
LDH	lactate dehydrogenase
LOH	length of hospitalization
Max CRP	maximum C-reactive protein

Max WBC	maximum white blood cell count
MOF	multi organ failure
NPO	nil per os
PC	pancreatic cancer
PICO	participants, intervention, comparison and outcomes
PINEAPPLE	Pain IN the EArly phase of Pediatric Pancreatitis
PRISMA-P	preferred reporting items for systematic review and meta-analysis
TRISIVITY	protocol
RBC	red blood cell count
ROC	receiver operating characteristic
SAP	severe acute pancreatitis
SIRS	systemic inflammatory response syndrome
sPEM	serum pancreatic enzyme measurement
TG	triglyceride
TPN	total parenteral nutrition
US	ultrasonography
WBC	white blood cell count
WHO	World Health Organization

II. GENERAL INTRODUCTION

II.1. Challenges in acute pancreatitis

Acute pancreatitis (AP) is one of the most common reasons for gastrointestinal hospitalizations in adults (1, 2). AP has an annual incidence of 13-45 per 100,000 persons and is increasing worldwide as a result of better awareness of the disease and obesity-related gallstone formation and hypertriglyceridemia (HTG) (3, 4). AP represents a remarkable disease burden for healthcare systems and patients' quality of life (5). This burden is further increased by the development of a severe disease course which is accompanied by increased length of hospitalization (LOH), elevated rate of complications, intensive care unit (ICU) stay, the need for invasive interventions, and mortality (5).

According to the revised Atlanta classification, the severity of AP is categorized as mild, moderately severe, and severe (6). Severe acute pancreatitis (SAP) develops in 15-20% of AP cases (1, 6); however, better understanding of the underlying mechanism may provide possibilities for decreasing severity. Although the pathomechanism of AP is still unclear, the most common etiological factors such as bile acids (7-10), fatty acids generated from triglyceride (TG), and non-oxidative ethanol metabolites (fatty acid ethyl esters, FAEEs) (11-16) were shown to cause mitochondrial damage with resultant adenosine triphosphate (ATP) and energy depletion in the exocrine pancreas. In addition, HTG contributes to systemic proinflammation and local hypoxia-induced acidosis caused by hyperviscosity (17, 18). According to these data, HTG was shown to increase the risk of the development of SAP (19-28) and aggravate the severity of AP compared to alcoholic and biliary etiologies (29-31). In contrast, early enteral nutrition (EEN) as early ATP restoration has been shown to be beneficial in AP compared with nil per os (NPO) therapy and total parenteral nutrition (TPN) regardless of the severity of AP (32-37). Accordingly, initial and appropriate lipid-lowering therapy may be beneficial in the case of hypertriglyceridemia-induced acute pancreatitis (HTG-AP), whereas energy restoration via enteral nutrition may play a key part of the therapy in all cases of AP. However, detailed analysis and evidence-based therapy for HTG-AP is missing, and despite the fact that the clinical characteristics of AP differ by age, nutritional guidelines for childhoodonset AP are limited and adopted from the adult protocols (38-48).

Not only therapeutic, but also diagnostic pediatric guidelines for AP are adopted from adult protocols (40, 41, 45). Some of these guidelines are based on the consensus of expert pediatric pancreatologists, but not on evidence-based pediatric data (49, 50). The recently

published acute pediatric pancreatitis (APP) guideline has low evidence as well (40). It is not surprising that the overall incidence of APP is lower compared to the adult population (1 per 100,000 persons or even less versus 13-45 per 100,000); however, two major studies have proven that the real incidence of APP (3.6–13.2 per 100,000) is much higher than we previously thought (3, 51-55). The reason is probably multifactorial, but it has been published by Morinville et al., that diagnostic workup influences the incidence of the disease (51). Their data showed that increased pancreatic enzyme testing could account for 94% of the change in all AP admissions in childhood, suggesting that APP is an underdiagnosed disease.

In contrast with the current diagnostic practice, there is significant importance in recognizing and diagnosing AP in childhood. Acute recurrent pancreatitis (ARP) develops in 10-35% of children following an initial AP (41, 56, 57), and idiopathic ARP is likely to be a transition phase between AP and chronic pancreatitis (CP) (58, 59) with 1-3.79 years of median time (60, 61). However, 10-16% of the pediatric CP patients have no documented prior episode of AP or ARP (60, 62). ARP and CP are of great importance because both are associated with a notable disease burden by pain, exocrine and endocrine dysfunction, frequent ER visits, hospitalizations, and school absenteeism (60). The most common risk factors of CP are alcohol and smoking in adults; however these are uncommon in children (63). Pediatric ARP and CP are frequently associated with pancreatobiliary obstructions in ~30% and genetic abnormalities in up to 73% (54, 60, 64, 65). Genetic involvement was shown to carry the fastest rate of progression from AP to CP (65). These data highlight the necessity of an appropriate and evidence-based diagnostic guideline for childhood-onset AP.

II.2. Motivation for my scientific work

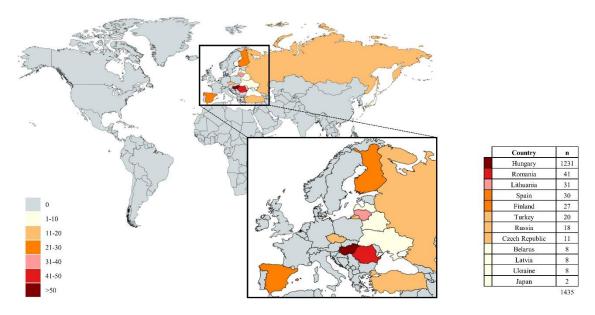
As a pediatric resident I recognized the importance of evidence-based clinical practice compared to decisions based on the experiences of individual physicians. First, we aimed to estimate the real incidence of APP and improve the diagnostic workup of childhood onset AP by establishing an international, multicenter observational clinical trial called PINEAPPLE (Pain IN the EArly phase of Pediatric Pancreatitis) (66). Furthermore, we reviewed the literature to analyze the effect of EEN versus NPO therapy on the outcome of APP and aggregate the information to increase the statistical power of nutritional AP guidelines in childhood compared to individual studies (67). Finally, we performed a cohort analysis of 716 adult AP cases to investigate the dose-dependent effect of HTG on AP and provide detailed data for further prospective randomized clinical trials (68, 69).

III. DOSE-DEPENDENT EFFECT OF HYPERTRIGLYCERIDEMIA ON ACUTE PANCREATITIS

III.1. Introduction

HTG affects 10–30% of the general adult population (70, 71). Classifying HTG is complex; both genetic (primary) and environmental (secondary) factors can lead to an elevated TG level. In rare cases (2%), primary severe HTG (TG \geq 10 mmol/l) may arise as a result of autosomal recessive, monogenic familial chylomicronemia syndrome (FCS, former Type I). However, a majority of severe HTG cases are multifactorial and have polygenic (mixed HTG, former Type V) determinants with additional secondary factors. Mild-to-moderate HTG cases (2–9.9 mmol/l TG) are similarly polygenic with complex genetic susceptibility (former Type IV, Type IIB and Type III) (3, 71, 72). Regarding environmental factors, alcohol, positive-energy balanced diet, obesity, uncontrolled diabetes mellitus (DM), renal diseases, pregnancy, hypothyroidism, and medications (e.g., estrogen, retinoids, thiazides, and β -blockers) were shown to be responsible for a raised TG level, usually with the interaction of genetic susceptibility (18, 73).

HTG is the third most common cause of AP, and is responsible for up to 15% of AP cases (26, 74, 75). According to the definition, the majority of experts agree that AP related to TG above 5.6 mmol/l should be considered as suspected HTG-AP, and AP associated with TG over 11.3 mmol/l is confirmed as HTG-AP (24, 72). Importantly, the occurrence of AP increases with the increase in TG level. There is a 5% possibility of developing AP if TG exceeds 11.3 mmol/l, and this rises to 10–20% if TG elevates to over 22.6 mmol/l (72). HTG-AP is of great importance for several reasons: i) it has shown a rising incidence worldwide as a result of increasing obesity-related dyslipidemia (4, 25, 27); ii) it raises the risk of severe AP and related complications (20, 24-26, 28, 31, 76-78); and iii) there is no evidence-based therapy for it (38, 39, 42, 43, 79).


III.2. Aims

We aimed to perform a cohort analysis for investigating the dose-dependent effect of HTG on AP and providing data for further prospective randomized clinical trials.

III.3. Methods

AP patients (n=1435) over 18 years old were enrolled in the prospectively collected

international, multicenter AP registry operated by the Hungarian Pancreatic Study Group (HPSG) between 2012 and 2017. Post-hoc cohort analysis was performed on 716 AP cases who underwent TG measurement within 72 hours of admission. AP was diagnosed based on International Association of Pancreatology/American Pancreatic Association (IAP/APA) and HPSG evidence-based guidelines (38, 39). Participating countries are shown in Fig. 1.

Fig. 1. Participating countries. Distribution of participating countries and number of enrolled acute pancreatitis cases (n=1435).

The threshold of the normal TG value was determined at 1.7 mmol/l (73). Cases where AP was accompanied by TG above 11.3 mmol/l were defined as HTG-AP. Six groups were established based on the Endocrine Society Clinical Practice Guideline and previously published clinical data related to HTG-AP (72, 73): Group 1: <1.7 mmol/l; Group 2: 1.7–2.19 mmol/l; Group 3: 2.2–5.59 mmol/l; Group 4: 5.6–11.29 mmol/l; Group 5: 11.3–22.59 mmol/l; and Group 6: \geq 22.6 mmol/l. To convert TG from mmol/l to mg/dl, multiply by 88.57. In the case of each variable, elevated TG groups (Groups 2-6) were compared with the normal TG group (Group 1). TG categories were collapsed to three groups (<1.7 mmol/l; 1.7-11.29 mmol/l; \geq 11.3 mmol/l) for the analysis of organ failure because of the low event number.

Seventy-three variables were collected from each AP case. The analysis was performed on 42,655/52,268 available data. Local complications, organ failure, and severity were defined based on the revised Atlanta classification (6). The 716 cases investigated showed the same epidemiological and major outcome distribution as the total cohort (1435 cases), demonstrating that our patient population represents a normal AP cohort (Fig. 2).

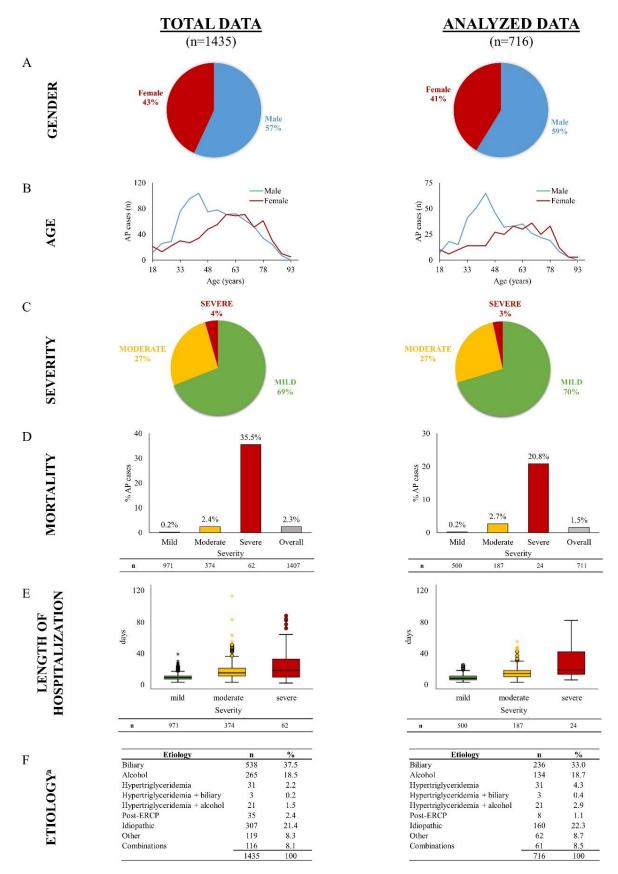
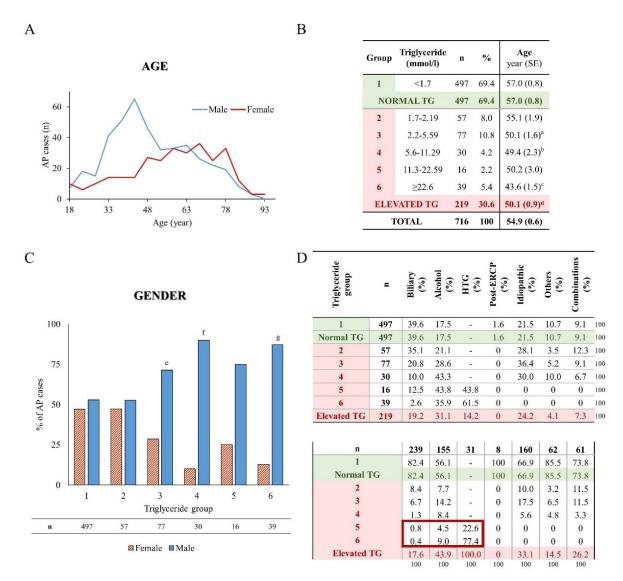


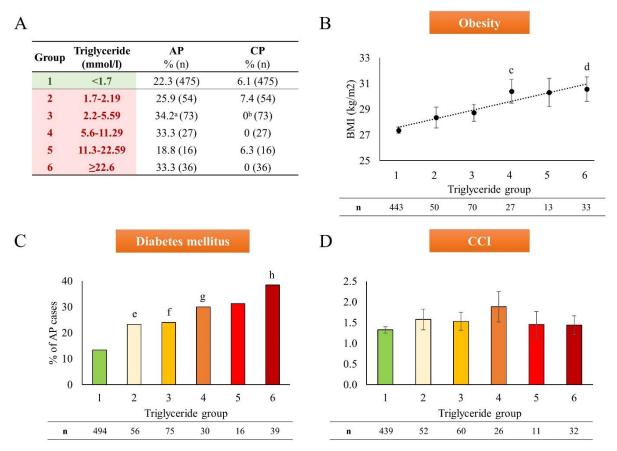
Fig. 2. Representation of enrolled patients (n=716) compared to the entire cohort (n=1435). A) Gender distribution of acute pancreatitis (AP) cases. B) Age distribution of AP cases in males and females. C) Severity

distribution of AP cases. **D**) Mortality of AP cases in the different severity groups. **E**) Length of hospitalization of AP cases in the different severity groups. **F**) Etiology distribution of AP cases (a: p=0.007). ERCP=endoscopic retrograde cholangiopancreatography. N numbers (n) indicate the total number of cases in each triglyceride group.


The registry received ethical permission from the Scientific and Research Ethics Committee of the Medical Research Council (22254-1/2012/EKU) in 2012, and all the patients provided written informed consent to participate. The study protocol conforms to the ethical guidelines of the Declaration of Helsinki updated in 2013 as reflected in a priori approval by the institution's human research committee.

Statistical analysis

Prior to analysis of the dataset, descriptive statistical tools were used to describe the basic characteristics. Mean and standard error of the mean were calculated for continuous variables, whereas the incidence in each group was determined for categorical variables. Depending on the distribution of the data, the independent Student's t-test or Mann−Whitney U test was used to evaluate differences between continuous parameters. The chi-square test or Fisher's exact test was conducted to analyze the relations between categorical variables. We compared the confidence intervals (CI) of the proportions to investigate differences in the incidence of moderately severe cases between groups. A p-value less than 0.05 (≤ 0.05) was determined as statistically significant. All analyses were performed using IBM-SPSS Statistical Software Version 25 (IBM Corporation, Armonk, NY, USA).


III.4. Results

In our cohort, 30.6% (n=219) of the patients presented with elevated TG level (≥1.7 mmol/l). HTG was significantly and dose-dependently linked to younger age and male gender (Fig. 3A-C). In 7.7% of AP cases (n=55), TG level was above 11.3 mmol/l, which is considered as a causative etiological factor (24, 73). In 56.4% of these cases, HTG-AP patients had no other etiology described; however, raised TG level was also accompanied by alcohol in 38.2% of these cases and by biliary etiology in 5.4%, showing that HTG-AP is associated with other etiologies in a substantial number of cases (Fig. 3D).

Fig. 3. Epidemiology and etiology. A) Age distribution of acute pancreatitis (AP) cases in males and females. **B)** Age distribution of triglyceride (TG) groups (a, c, d: p=<0.001; b: p=0.010). **C)** Gender distribution of triglyceride groups (e: p=0.002; f, g: p<0.001). **D)** Etiology. HTG=hypertriglyceridemia; ERCP=endoscopic retrograde cholangiopancreatography. N numbers (n) indicate the total number of cases in each triglyceride group.

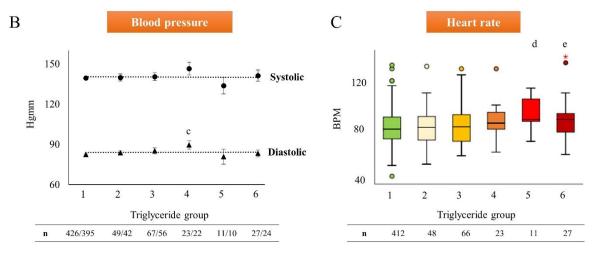

Data from patients' medical history revealed that HTG is significantly and dose-dependently linked to obesity and DM (Fig. 4B, C); however, there is no relation to CP and the Charlson comorbidity index (CCI) (80) (Fig. 4A, D). The amount of previous AP in the medical history was higher in the HTG group compared to the normal TG group (Fig. 4A).

Fig. 4. Patients' medical history of triglyceride groups. A) Acute pancreatitis (AP) and chronic pancreatitis (CP) in patients' medical history (a: p=0.026; b: p=0.023). **B)** Obesity (body mass index (BMI), kg/m²) (c: p=0.006; d: p=0.001). **C)** Diabetes mellitus in medical history (e: p=0.046; f: p=0.016; g: p=0.026; h: p<0.001). **D)** Charlson comorbidity index (CCI). N numbers (n) indicate the total number of cases in each triglyceride group.

General symptoms of AP and physical examination on admission (incidence, duration and intensity of pain, nausea, vomiting, abdominal tenderness and guarding, and blood pressure) have not shown a significant link to elevated TG level (Fig. 5A, B). However, HTG was significantly related to increased heart rate (Fig. 5C). Regarding the laboratory parameters on admission showing significant differences with HTG, amylase, lipase, sodium, and calcium were associated inversely; however, glucose, C-reactive protein (CRP), cholesterol, red blood cell count (RBC), hemoglobin, and hematocrit were related in parallel with TG level (Fig. 6).

			Abdominal pain				Abdominal	**************************************
Group	Triglyceride (mmol/l)	% (n)	Duration before admission hour±SE (n)	Intensity 1-10±SE (n)	Nausea % (n)	Vomiting % (n)	tenderness % (n)	Abdominal guarding % (n)
1	<1.7	98.6 (497)	58.7±5.1 (434)	7.6±0.1 (287)	69.6 (477)	56.3 (485)	86.2 (478)	10.3 (478)
NOF	RMALTG	98.6	58.7±5.1	7.6±0.1	69.6	56.3	86.2	10.3
2	1.7-2.19	98.2 (57)	37.7±7.1 (46)	$7.8\pm0.4(27)$	79.2 (53)	58.2 (55)	81.5 (54)	11.1 (54)
3	2.2-5.59	100 (77)	50.8±15.1a(67)	7.7±0.3 (42)	66.7 (72)	46.7 (75)	87.8 (74)	12.2 (74)
4	5.6-11.29	100 (30)	31.6±7.6 (26)	$7.8\pm0.3(17)$	76.7 (30)	60.0 (30)	100 ^b (27)	14.8 (27)
5	11.3-22.59	100 (16)	32.5±7.8 (15)	$8.0\pm0.5(8)$	62.5 (16)	50.0 (16)	100 (16)	13.3 (15)
6	≥22.6	100 (39)	49.0±21.5 (33)	7.7±0.5 (19)	61.1 (36)	45.9 (37)	89.2 (37)	10.8 (37)
ELEV	VATED TG	99.5	43.1±6.9	7.8±0.2	70.0	51.6	88.9	12.1

Fig. 5. Symptoms and physical findings on admission in the different triglyceride (**TG**) groups. **A**) Incidence, duration before admission and intensity of pain. Nausea, vomiting, abdominal tenderness and abdominal guarding (a: p=0.025; b: p=0.036). **B**) Systolic and diastolic blood pressure (Hgmm) (c: p=0.012). **C**) Heart rate (BPM) (d, e: p=0.010). N numbers (n) indicate the total number of cases in each triglyceride group.

On admission, laboratory parameters consistent with cholestasis suggested that HTG is less common in cases with biliary etiology (Fig. 7). The parallel rise in gamma-glutamyltransferase (γ GT) and TG levels confirms that alcohol consumption is linked to HTG (Fig. 7D). White blood cell count (WBC), thrombocyte, lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatinine, and potassium had no significant relation to HTG (Fig. 8).

The rate of local complications, including peripancreatic fluid collection, pancreatic necrosis, and DM was significantly and dose-dependently increased with TG level (Fig. 9B-E); however, pancreatic pseudocysts did not show significant differences between the investigated groups above 2.2 mmol/l (Fig. 9F).

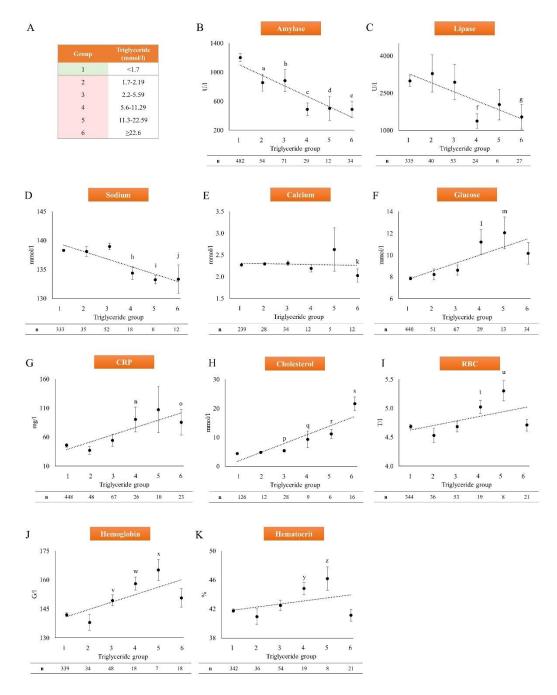


Fig. 6. Laboratory parameters on admission significantly associated with hypertriglyceridemia. A) Triglyceride groups (1–6). B) Amylase (U/l) (a: p=0.036; b, c, e: p=<0.001; d: p=0.009). C) Lipase (U/l) (f: p=0.017; g: p=0.001). D) Sodium (mmol/l) (h, i: p=<0.001; j: p=0.005). E) Calcium (mmol/l) (k: p=0.012). F) Glucose (mmol/l) (l, m: p=<0.001). G) C-reactive protein (CRP, mg/l) (n: p=0.021; o: p=0.014). H) Cholesterol (mmol/l) (p: p=0.008; q: p=0.006; r, s: p<0.001). I) Red blood cell count (RBC, T/l) (t: p=0.017; u: p=0.004) J) Hemoglobin (G/l) (v: p=0.008; w: p<0.001; x: p=0.002). K) Hematocrit (%) (y: p=0.009; z: p=0.014). N numbers (n) indicate the total number of cases in each triglyceride group.

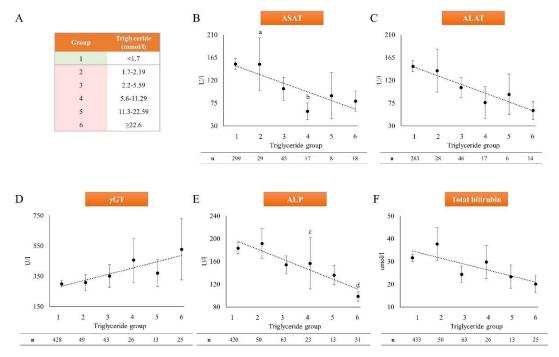


Fig. 7. Laboratory parameters representing hepatobiliary system on admission in the different triglyceride groups. A) Triglyceride groups (1–6). B) Aspartate transaminase (ASAT, U/l) (a: p=0.050; b: p=0.037). C) Alanine transaminase (ALAT, U/l). D) Gamma-glutamyltransferase (γ GT, U/l). E) Alkaline phosphatase (ALP, U/l) (c: p=0.028; d: p=0.003). F) Total bilirubin (umol/l). N numbers (n) indicate the total number of cases in each triglyceride group.

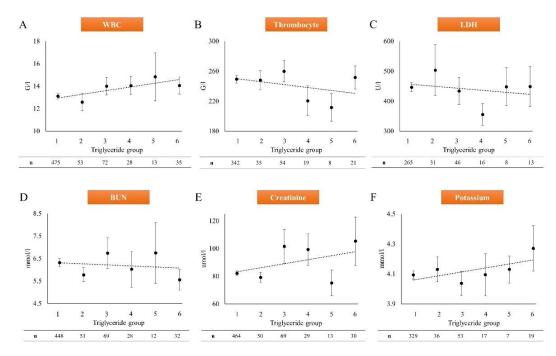
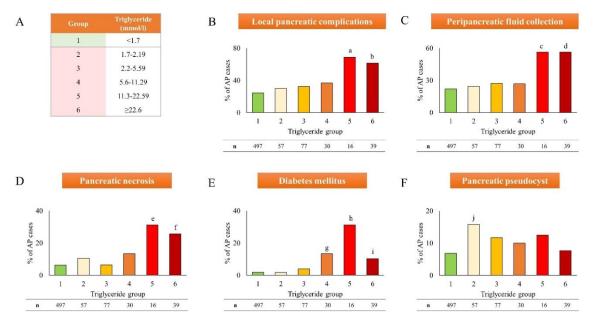



Fig. 8. Laboratory parameters on admission without significant alterations with hypertriglyceridemia. A) White blood cell count (WBC, G/l). B) Thrombocyte (G/l). C) Lactate dehydrogenase (LDH, U/l). D) Blood urea nitrogen (BUN, mmol/l). E) Creatinine (umol/l). F) Potassium (mmol/l). N numbers (n) indicate the total number of cases in each triglyceride group.

Organ failure, including heart and renal failure, and maximum CRP level were significantly and dose-dependently raised by TG level (Fig. 10A, C, E, F); however, respiratory failure and maximum WBC did not show any significant differences by HTG (Fig. 10B, D).

Fig. 9. Local pancreatic complications in the different triglyceride groups. A) Triglyceride groups (1–6). **B)** Local pancreatic complications (a, b: p<0.001). **C)** Peripancreatic fluid collection (c: p=0.004; d: p<0.001). **D)** Pancreatic necrosis (e: p=0.003; f: p<0.001). **E)** Diabetes mellitus as complication (g: p=0.004; h: p<0.001; i: p=0.011). **F)** Pancreatic pseudocyst (j: p=0.031). AP=acute pancreatitis. N numbers (n) indicate the total number of cases in each triglyceride group.

As regards severity, TG level above 11.3 mmol/l was associated with a significantly higher rate of moderately severe AP and longer hospital stay, whereas TG level above 22.6 mmol/l was significantly related to severe AP as well (Fig. 11A, B). Due to the low event rate, the effect of HTG on mortality could not be determined (Fig. 11A). Detailed values of charts and statistical parameters are shown in Tables 1 and 2. Plasmapheresis was carried out in 36.4% (20/55) of the HTG-AP cases; 85% of these patients had an initial TG level higher than 22.6 mmol/l, and the average TG level was 70.1±10.0 mmol/l.

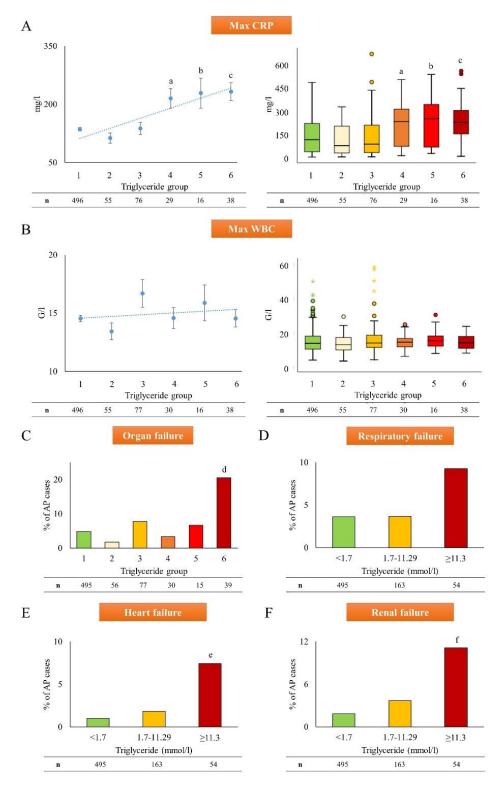
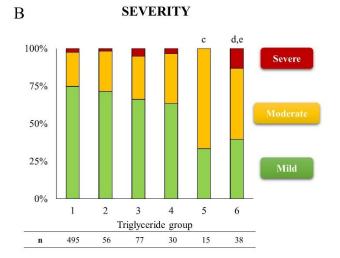



Fig. 10. Systemic inflammatory effect and organ failure in the different triglyceride groups. A) Maximum C-reactive protein (Max CRP, mg/l) (a, c: p<0.001; b: p=0.029). B) Maximum white blood cell count (Max WBC, G/l). C) Organ failure (d: p=0.001). D) Respiratory failure. E) Heart failure (e: p=0.007). F) Renal failure (f: p=0.002). AP=acute pancreatitis. N numbers (n) indicate the total number of cases in each triglyceride group. Group 1: <1.7 mmol/l; Group 2: 1.7−2.19 mmol/l; Group 3: 2.2−5.59 mmol/l; Group 4: 5.6−11.29 mmol/l; Group 5: 11.3−22.59 mmol/l; Group 6: ≥22.6 mmol/l.

Group	Triglyceride (mmol/l)	LOH day±SE (n)	Mortality event n (n)
1	<1.7	10.1±0.3 (497)	8 (496)
NOR	MAL TG	10.1±0.3	8
2	1.7-2.19	10.4±1.2 (57)	0 (56)
3	2.2-5.59	9.7±1.1 (77)	1 (77)
4	5.6-11.29	10.1±1.4 (30)	1 (30)
5	11.3-22.59	13.1±1.9a(16)	0 (15)
6	≥22.6	14.3±2.1b(39)	1 (38)
ELEV	ATED TG	11.0±0.7	3
T	OTAL	10.4±0.3	11

Fig. 11. Outcomes in the different triglyceride (TG) groups. A) Length of hospitalization (LOH, day) and mortality (n) (a: p=0.034; b: p=0.001). **B)** Severity (c: p=0.001; d: p<0.001). Moderately severe acute pancreatitis (AP) cases (Group 1: 22.6% (95% CI: 19%–26.6%); Group 5: 66.7% (95% CI: 38.4%–88.2%); Group 6: 47.4% (95% CI: 31.0%–64.2%)). Severe AP cases (e: p=0.006). N numbers (n) indicate the total number of cases in each triglyceride group.

III.5. Discussion

HTG-AP has grown in incidence and importance. According to the previously published literature (74, 75), HTG is the third most common cause of AP (7.7%). However, it seems more than likely that the incidence of HTG-AP is higher than is usually recorded. The prospective multicenter, international AP cohort run by the HPSG revealed that TG measurement is performed in just 50% (716/1435) of AP cases within the first three days of admission, and most probably this rate is even lower in centers that provide no data. Furthermore, our data also confirmed additional etiological factors (alcohol and biliary disease) besides HTG in 43.6% of HTG-AP cases, and showed a dose-dependent relation between obesity (body mass index), pre-existing DM, and HTG. These data also suggest a higher incidence rate since physicians finding an etiological factor behind AP usually do not undertake further investigation. Our data are in accordance with Scherer et al., who recommend that HTG-AP should be suspected in the case of significant alcohol consumption, poorly controlled DM, and metabolic syndrome, including obesity (72). Although our data clearly show that biliary obstruction may be associated with HTG, serum TG was measured in just 44.3% (266/601) of the biliary AP cases. Furthermore, in the case of biliary AP, there is no recommendation for TG measurement.

Our data analysis confirmed results published by Zheng et al. (25) and Zhu et al. (26) which show that HTG is significantly linked to younger age and male gender. This is not surprising, since underlying genetic abnormalities behind HTG contribute to younger manifestation, and alcohol-related HTG affects the male gender and younger ages more (3, 72, 81). In contrast, biliary etiology is accompanied by a higher rate for the female gender and older population (3, 82).

Diagnosing AP in the presence of HTG can be challenging due to in vitro interference between plasma TG levels above 5.6 mmol/l (with grossly turbid plasma) and determination of amylase and lipase activities (83, 84). Our data confirmed a significant reduction of amylase and lipase levels with the elevation of TG. Furthermore, case reports have been published by Singh et al. (85) and Sotello et al. (86), presenting HTG-AP patients with normal amylase and lipase levels.

Our analysis has shown that local complications and organ failure were significantly increased by HTG, as published in previous reports and a recent meta-analysis by Kiss et al. (19, 20, 23, 24, 77, 87). Nawaz et al. (21) confirmed that TG above 2.3 mmol/l is independently associated with persistent organ failure on a multivariate analysis controlling for age, gender, body mass index, diabetes, and alcohol etiology, whereas Szentesi et al. (88) revealed that hyperlipidemia was an independent predictive factor for local complications and new-onset DM. In addition, a retrospective analysis of 242 HTG-AP patients showed that serum TG of ≥5.6 mmol/l measured by 48 hours of admission was independently associated with persistent organ failure (89), confirming the importance of early and adequate lipid-lowering therapy. Although we could not confirm a significantly higher risk of pancreatic pseudocysts in the case of TG above 2.2 mmol/l, it is well known that pseudocysts usually occur more than four weeks after the onset of AP, and the average hospital stay was 10.4±0.3 days in our cohort (6).

Based on our data analysis, severity of AP and LOH were significantly increased by HTG (20-26, 31). Navarro et al. (30) and Goyal et al. (29) also confirmed that HTG aggravates the severity of AP compared to biliary and alcoholic etiology, respectively. The underlying mechanism is clearly complex. Unsaturated free fatty acids (UFAs) generated from TG are responsible for cell injury by membrane lipid peroxidation, long-lasting cytosolic Ca²⁺ elevation, and mitochondrial damage (17, 90). In the case of additional alcohol consumption, non-oxidative ethanol metabolites FAEEs contribute to the persistent Ca²⁺ elevation and drop in ATP level (11, 91). Additionally, the raised plasma viscosity caused by hyperchylomicronemia leads to ischemia and acidosis in the pancreatic capillaries (18). This

pathologic environment results in an early trypsinogen activation and pancreatic lipase leakage, leading to further free fatty acid (FFA) release and accumulation (18, 90, 92). Moreover, UFAs bring about a systemic pro-inflammation through increased mRNA production of tumor necrosis factor-alpha (TNF- α) and neutrophil chemoattractants, thereby increasing the severity of AP (17). In our cohort, heart rate and maximum CRP were significantly raised by HTG, suggesting the systemic inflammatory effect of relatively high TG levels. In contrast, Pothoulakis et al. (93) and Balachandra et al. (94) reported that HTG does not worsen severity. Furthermore, Wang et al. showed that longer hospital stay was associated with higher TG level, but the difference was not significant (23).

The overall mortality of AP is ~1% based on the literature (3, 25) and 1.5% in our cohort, but we could not perform a further subgroup analysis because of the low event number. Zhu et al. (26) and Deng et al. (95) confirmed that HTG-AP is accompanied by a significantly higher rate of mortality among severe AP cases compared to biliary AP and non-HTG etiology, respectively. However, Tai et al. (22) showed that mortality was similar in HTG-AP and biliary AP groups in a general AP cohort.

In our cohort, plasmapheresis was carried out in 36.4% of the HTG-AP cases. Although our data clearly suggest that the severity of AP is significantly elevated above the 11.3 mmol/l TG level, the average TG level was 70.1 ± 10.0 mmol/l in patients with plasmapheresis, and 85% of these cases had a TG level over 22.6 mmol/l. We could not state any further conclusions regarding the therapy because of incomplete data and lack of randomization as a result of the cohort feature of the dataset. Overall and in most cases, TG-lowering therapy such as plasmapheresis and glucose-heparin-insulin (GLU-HEP-INS) administration is performed above a TG level of 40 mmol/l. In order to solve this unmet need, the HPSG has initiated a prospective randomized clinical trial to investigate different lipid-lowering therapies in AP (68).

Our study has several limitations. Although all data were collected prospectively, all questions were raised retrospectively. Cases were included in the analysis with TG measurement within the first three days of admission, but unfortunately only 50% of the entire cohort met the inclusion criteria. We attempted to minimize these limitations by comparing the epidemiological and major outcome distributions of the data analyzed and the whole cohort. We confirmed that the population under investigation represents a normal AP cohort.

III.6. Conclusion

Our results confirm that HTG dose-dependently increases the complications and severity of AP, and highlight the necessity of better awareness of an accurate determination of causative and influencing risk factors in AP regardless of the etiology. Our data suggest that lipid-lowering therapy may be important clinically at a much lower TG level than we previously thought.

Table 1. Values. Values on charts in the different triglyceride groups (Group 1: <1.7 mmol/l; Group 2: 1.7–2.19 mmol/l; Group 3: 2.2–5.59 mmol/l; Group 4: 5.6–11.29 mmol/l; Group 5: 11.3–22.59 mmol/l; Group 6: ≥22.6 mmol/l). DM=diabetes mellitus.

Parameter	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6	
		FIG. 3					
Gender, male %	52.9	52.6	71.4	90.0	75.0	87.2	
FIG. 4							
Obesity, body mass index, kg/m ² (SE)	27.4 (0.3)	28.4 (0.8)	28.7 (0.7)	30.4 (0.9)	30.3 (1.1)	30.6 (1.0)	
DM in the personal history, %	13.4	23.2	24.0	30.0	31.3	38.5	
Charlson comorbidity index (CCI) (SE)	1.3 (0.1)	1.6 (0.2)	1.5 (0.2)	1.9 (0.4)	1.5 (0.3)	1.4 (0.2)	
·		FIG. 5					
Blood pressure – systolic, Hgmm (SE)	139.5 (1.1)	139.9 (2.6)	140.5 (2.8)	146.5 (4.7)	133.8 (6.3)	141.3 (4.2)	
Blood pressure – diastolic, Hgmm (SE)	82.2 (0.7)	83.7 (1.5)	85.2 (2.2)	89.5 (3.1)	80.8 (5.6)	83.3 (2.6)	
Heart rate, BPM (SE)	81.6 (0.7)	82.3 (2.3)	83.5 (2.1)	87.0 (2.8)	93.3 (4.1)	89.3 (3.4)	
		FIG. 6					
Amylase, U/l (SE)	1203.2	857.2	884.7	488.6	501.6	488.4	
Amylase, 6/1 (SE)	(55.6)	(114.8)	(151.3)	(86.7)	(163.9)	(113.5)	
Lipase, U/l (SE)	2993.2	3290.7	2942.5	1376.5	2040.2	1543.6	
* ' ' '	(209.5)	(741.6)	(708.9)	(298.9)	(619.3)	(485.4)	
Sodium, mmol/l (SE)	138.3 (0.2)	138.1 (0.8)	139.0 (0.6)	134.4 (1.1)	133.3 (0.7)	133.3 (2.5)	
Calcium, mmol/l (SE)	2.3 (0)	2.3 (0)	2.3 (0)	2.2 (0.1)	2.6 (0.5)	2.0 (0.2)	
Glucose, mmol/l (SE)	7.9 (0.1)	8.2 (0.5)	8.6 (0.5)	11.2 (1.1)	12.1 (1.5)	10.2 (1.0)	
C-reactive protein (CRP), mg/l (SE)	46.0 (3.2)	37.2 (6.9)	54.5 (10.5)	90.5 (21.2)	107.3 (39.7)		
Cholesterol, mmol/l (SE)	4.4 (0.1)	4.9 (0.2)	5.4 (0.4)	9.3 (2.9)	11.2 (1.6)	21.6 (2.4)	
Red blood cell count (RBC), T/l (SE)	4.7 (0)	4.5 (0.1)	4.7 (0.1)	5.0 (0.1)	5.3 (0.2)	4.7 (0.1)	
Hemoglobin, G/l (SE)	142.0 (1.0)	138.0 (4.0)	149.4 (2.8)	158.1 (3.4)	165.1 (5.4)	150.7 (4.7)	
Hematocrit, % (SE)	41.8 (0.3)	41.0 (1.1)	42.5 (0.7)	44.8 (0.8)	46.2 (1.6)	41.1 (0.8)	
	T	FIG. 7					
Aspartate transaminase (ASAT), U/l (SE)			103.5 (22.7)	58.6 (16.9)	89.5 (45.7)	78.7 (20.2)	
Alanine transaminase (ALAT), U/l (SE)		139.2 (42.7)		76.0 (31.6)	92.0 (40.3)	60.2 (18.2)	
Gamma-glutamyltransferase(γGT), U/l	299.7	308.8	351.1	455.8	370.4	526.7	
(SE)	(20.3)	(53.3)	(76.9)	(145.6)	(89.6)	(201.0)	
Alkaline phosphatase (ALP), U/l (SE)	183.4 (9.8)		154.2 (15.8)			98.7 (8.5)	
Total bilirubin, umol/l (SE)	31.6 (1.6)	37.7 (7.2)	24.4 (3.6)	29.7 (7.3)	23.2 (5.2)	20.0 (3.8)	
	T	FIG. 8					
White blood cell count (WBC), G/l (SE)	13.1 (0.2)	12.6 (0.8)	14.0 (0.8)	14.0 (0.8)	14.8 (2.1)	14.0 (0.8)	
Thrombocyte, G/l (SE)	249.3 (5.2)	· · · · ·	259.8 (14.1)	` ′		` ′	
Lactate dehydrogenase (LDH), U/l (SE)	ì		433.9 (45.1)		1		
Blood urea nitrogen (BUN), mmol/l (SE)	6.3 (0.2)	5.8 (0.3)	6.7 (0.7)	6.0 (0.8)	6.7 (1.4)	5.6 (0.5)	
Creatinine, umol/l (SE)	82.1 (1.7)	79.1 (3.6)	101.6 (12.2)	99.3 (11.4)	75.1 (9.3)	105.3 (17.4)	
Potassium, mmol/l (SE)	4.1 (0)	4.1 (0.1)	4.0 (0.1)	4.1 (0.1)	4.1 (0.1)	4.3 (0.2)	
		FIG. 9					
Local pancreatic complications, %	24.3	29.8	32.5	36.7	68.8	61.5	
Peripancreatic fluid collection, %	21.9	24.6	27.3	26.7	56.3	56.4	
Pancreatic necrosis, %	6.2	10.5	6.5	13.3	31.3	25.6	
DM as complication, %	1.8	1.8	3.9	13.3	31.3	10.3	
Pancreatic pseudocyst, %	6.8	15.8	11.7	10.0	12.5	7.7	

Table 1 (continued)

		FIG. 10				
Maximum C-reactive protein (CRP), mg/l (SE)	135.8 (5.0)	113.2 (13.1)	137.8 (15.5)	215.2 (25.3)	228.8 (38.3)	232.4 (22.7)
Maximum white blood cell count (WBC), G/I (SE)	14.6 (0.3)) 13.4 (0.7) 16.7 (1.2) 14.6 (0		14.6 (0.9)	15.9 (1.5)	14.5 (0.7)
Organ failure, %	4.8	1.8 7.8 3.3		3.3	6.7	20.5
Respiratory failure, %	3.6	3.7 9.3			.3	
Heart failure, %	1.0		1.8		7	.4
Renal failure, %	1.8	3.7			.1	
FIG. 11						
Mild acute pancreatitis, %	74.7	71.4	66.2	63.3	33.3	39.5
Moderately severe acute pancreatitis, %	22.6	26.8	28.6	33.3	66.7	47.4
Severe acute pancreatitis, %	2.6	1.8	5.2	3.3	0	13.2

Table 2. Statistics. P-values of parameters analyzed in the different triglyceride (TG) groups (Normal: <1.7 mmol/l; Group 2: 1.7–2.19 mmol/l; Group 3: 2.2–5.59 mmol/l; Group 4: 5.6–11.29 mmol/l; Group 5: 11.3–22.59 mmol/l; Group 6: \geq 22.6 mmol/l). Significant differences (p \leq 0.05) are in grey and emboldened. AP=acute pancreatitis; CP=chronic pancreatitis; DM=diabetes mellitus.

Parameter	Normal vs							
1 arameter	Group 2	Group 3	Group 4	Group 5	Group 6			
FIG. 3								
Age	0.290	< 0.001	0.010	0.075	< 0.001			
Gender	0.967	0.002	< 0.001	0.081	< 0.001			
FIG. 4								
AP in the medical history	0.548	0.026	0.185	1.000	0.130			
CP in the medical history	0.764	0.023	0.391	1.000	0.251			
Obesity (body mass index)	0.229	0.056	0.006	0.057	0.001			
DM in the medical history	0.046	0.016	0.026	0.058	< 0.001			
Charlson comorbidity index (CCI)	0.247	0.345	0.085	0.276	0.215			
		FIG. 5						
Abdominal pain	0.583	0.602	1.000	1.000	1.000			
Duration of abdominal pain before admission	0.051	0.025	0.135	0.420	0.226			
Intensity of abdominal pain	0.656	0.850	0.903	0.824	0.671			
Nausea	0.144	0.615	0.413	0.544	0.288			
Vomiting	0.788	0.119	0.691	0.618	0.222			
Abdominal tenderness	0.348	0.701	0.036	0.146	0.608			
Abdominal guarding	0.844	0.618	0.512	0.661	0.784			
Blood pressure – systolic	0.902	0.742	0.159	0.431	0.697			
Blood pressure – diastolic	0.476	0.215	0.012	0.734	0.712			
Heart rate	0.758	0.334	0.087	0.010	0.010			
		FIG. 6						
Amylase	0.036	< 0.001	< 0.001	0.009	< 0.001			
Lipase	0.220	0.117	0.017	0.825	0.001			
Sodium	0.929	0.072	< 0.001	< 0.001	0.005			
Calcium	0.509	0.371	0.257	0.860	0.012			
Glucose	0.506	0.091	< 0.001	< 0.001	0.087			
C-reactive protein (CRP)	0.926	0.698	0.021	0.067	0.014			
Cholesterol	0.126	0.008	0.006	< 0.001	< 0.001			
Red blood cell count (RBC)	0.155	0.990	0.017	0.004	0.850			
Hemoglobin	0.995	0.008	< 0.001	0.002	0.070			
Hematocrit	0.368	0.324	0.009	0.014	0.575			

Table 2 (continued)

Table 2 (continued)		FIG. 7			
Aspartate transaminase (ASAT)	0.050	0.070	0.037	0.321	0.165
Alanine transaminase (ALAT)	0.094	0.537	0.095	0.939	0.148
Gamma-glutamyltransferase (γGT)	0.627	0.704	0.320	0.140	0.575
Alkaline phosphatase (ALP)	0.514	0.631	0.028	0.968	0.003
Total bilirubin	0.652	0.056	0.512	0.555	0.060
		FIG. 8			'
White blood cell count (WBC)	0.492	0.213	0.370	0.443	0.324
Thrombocyte	0.940	0.458	0.711	0.265	0.914
Lactate dehydrogenase (LDH)	0.557	0.524	0.221	0.593	0.975
Blood urea nitrogen (BUN)	0.799	0.520	0.395	0.964	0.233
Creatinine	0.534	0.246	0.081	0.147	0.146
Potassium	0.673	0.463	0.990	0.847	0.145
		FIG. 9			
Local pancreatic complications	0.365	0.128	0.130	< 0.001	< 0.001
Peripancreatic fluid collection	0.651	0.297	0.545	0.004	< 0.001
Pancreatic necrosis	0.255	1.000	0.129	0.003	< 0.001
DM as complication	1.000	0.210	0.004	< 0.001	0.011
Pancreatic pseudocyst	0.031	0.133	0.459	0.311	0.744
		FIG. 10			
Maximum C-reactive protein (CRP)	0.147	0.886	< 0.001	0.029	<0.001
Maximum white blood cell count (WBC)	0.197	0.079	0.982	0.398	0.999
Organ failure	0.498	0.273	1.000	0.535	0.001
Respiratory failure	0.979 0.065				
Heart failure	0.416 0.007			007	
Renal failure	0.221 0.002				002
		FIG. 11			
Length of hospitalization	0.598	0.221	0.969	0.034	0.001
Severity	0.762	0.221	0.372	0.001	< 0.001
Severe AP	1.000	0.267	0.566	1.000	0.006

FIG. 2				
Parameter	Total cohort vs analyzed data			
Gender	0.363			
Age	0.369			
Severity	0.505			
Severe AP	0.256			
Mortality	0.148			
Length of hospitalization	0.084			
Etiology	0.007			

FIG. 11				
TG group	Moderately severe AP	95% CI		
1	22.6%	19.0%	26.6%	
2	26.8%	15.8%	40.3%	
3	28.6%	18.8%	40.0%	
4	33.3%	17.3%	52.8%	
5	66.7%	38.4%	88.2%	
6	47.4%	31.0%	64.2%	

IV. CHILDREN ARE NOT SMALL ADULTS

Since childhood onset pancreatitis is a different entity compared with pancreatitis in adults, there are remarkable differences in incidence, etiology, clinical course and severity between the two age groups (41, 45, 53, 54, 96). However, trials are limited and based on small cohorts or completely lacking in children. Therefore, most of the pediatric guidelines are adopted from the adult protocols.

IV.1. THE PINEAPPLE STUDY

IV.1.1. Introduction

Several publications describe an increasing incidence of AP in both children and adults (52, 53, 97-100). Although the overall incidence of APP is below 1 per 100,000 worldwide, two major studies have proven that the incidence of AP is not much less in children than in adults (3.6–13.2 per 100,000 versus 13-45 per 100,000) (51-55). Diagnosis of AP requires at least two of the following parameters: (1) abdominal pain, (2) serum amylase and/or lipase values \geq 3 times upper limits of normal, and (3) characteristic imaging findings for AP (39, 40). A retrospective trial in Pittsburgh revealed a close relationship between the number of serum amylase and lipase measurements and the rising incidence of the disease (51). Their data showed that the increased pancreatic enzyme testing could account for 94% of the change in all childhood AP admissions, suggesting that APP is an underdiagnosed disease.

There are factors which make the diagnosis of APP challenging: (i) abdominal pain is a common complaint in kids; 50% of the cases are in the category of pain-predominant functional gastrointestinal disorder with no significant morbidity (101); (ii) hospitals cannot afford to measure serum amylase/lipase in every child experiencing abdominal pain (101); (iii) the clinical course of AP, pancreatic exocrine function, and radiological preferences differ by age (41, 53, 102); (iv) pediatric trials are lacking, so diagnostic criteria for APP are based on adult protocols and no evidence-based medicine (EBM) guidelines are available to provide proper instruction concerning the necessity of diagnostic tests for AP during abdominal pain in children (40, 45). Therefore, most of the ordered pancreatic enzyme tests and abdominal ultrasonography (US) are based on individual pediatrician experience, and APP may be delayed or underdiagnosed as a result of the decreased awareness of diagnostic workup (103). Overall,

international observational clinical trials are crucially needed to understand the most common clinical characteristics of AP in children.

IV.1.2. Aims

We aimed to perform a review of our current clinical practice in order to estimate the real incidence of APP and to provide a fast, simple, and authentic scoring system that helps to evaluate (in a reliable and cost-efficient way) the necessity of pancreatic enzyme tests and abdominal US when a child has abdominal pain.

IV.1.3. Methods

We initiated an international, multicenter, clinical trial called PINEAPPLE. The study has been established and drafted by the HPSG. The trial consists of a retrospective and a prospective subtrial.

PINEAPPLE-R is a retrospective review of electronic computerized records of children (under 18 years old) appearing at emergency units, centered around their clinical symptoms, serum pancreatic enzyme measurement (sPEM), and abdominal imaging examinations. Inclusion and exclusion criteria are shown in Table 3. Diagnosis and data concerning abdominal pain [yes/no] are required for all patients appearing at ER units. Diagnosis of abdominal pain is decided based on the doctor's record. If the patient had abdominal pain, information about basic clinical symptoms (vomiting, nausea), sPEM (either amylase or lipase; if yes: amylase/lipase [normal/increase less than 3x/increase more than 3x the upper threshold]) and imaging examination of the pancreas (if yes: type and result) are obligatory. Data are collected into a uniform harmonized Excel sheet.

PINEAPPLE-P is the prospective part of the study and has a questionnaire-style data

patient under 18 years old presenting at ER units with acute abdominal pain is enrolled to the study regardless of the etiology (Table 3). Acute abdominal pain was defined as pain of less than one month duration.

Table 3. Inclusion and exclusion criteria of the PINEAPPLE study.

	PINEAPPLE-R	PINEAPPLE-P
Inclusion criteria	Age under 18 years oldAccurate electronic data mentioned in the protocol	Age under 18 years oldAcute abdominal pain
Exclusion criteria	Age above 18 years oldInaccurate electronic data mentioned in the protocol	Age above 18 years oldNo or chronic abdominal pain (104)

Detailed pediatric patients' data are collected via a questionnaire, sPEM and abdominal US are performed in all cases (Table 4). Patients and parents must be informed accordingly, and the 'informed consent form' is required to be signed.

The definition of APP is based on the fulfillment of '2 out of 3' of the following criteria: (i) abdominal pain compatible with AP; (ii) serum amylase and/or lipase $\geq 3x$ upper limit of normal; (iii) characteristic findings of AP by abdominal imaging (38, 39).

Table 4. Summary of clinical data required for PINEAPPLE-P. AP=acute pancreatitis; CP=chronic pancreatitis; AIP=autoimmune pancreatitis; PC=pancreatic cancer; US=ultrasonography; CT=computed tomography.

Male/female Male/female	1. Patient personal details		
2. Medical history (a) Family medical history Pancreas disorders in family history: AP/CP/AIP/PC Other diseases in family history (b) Personal medical history Known diseases (b) Personal medical history Known diseases Abdominal surgery New medications taken in the last 2 weeks Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks Any other event in the last 2 weeks Any other of here are a many hours have passed since the pain started? Intensity Tendency Continuity Continuity Continuity (b) In the case of abdominal pain lasting longer than 48 hours Wes/no/unknown Yes/no/unknown; if localized: region (1-9) Yes/no/unknown Decreasing/intensifying/stagnating/ unknown Yes/no/unknown		Male/female	
(a) Family medical history Pancreas disorders in family history: AP/CP/AIP/PC Other diseases in family history (b) Personal medical history Known diseases Abdominal surgery New medications taken in the last 2 weeks Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Any event environment of the child in the last 2 weeks Any other event in the last 2 weeks Any other event in the last 2 weeks Any other event in the last 2 weeks Any other freatmilk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Continuity Number: 1-10 scale/unknown Tendency Decreasing/intensifying/stagnating/unknown Tendency Decreasing/intensifying/stagnating/unknown Tendency Dull/sharp/cramping/unknown Dull/sharp/cramping/unknown Dull/sharp/cramping/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) Was everyday activity influenced? Yes/no/unknown Was everyday activity influenced? Yes/no/unknown Yes/no/unknown Yes/no/unknown Yes/no/unknown Yes/no/unknown; if yes: description of it Yes/no/unknown Yes/no/unknown Number: 1-10 scale/unknown Decreasing/intensifying/stagnating/unknown Tendency Decreasing/intensifying/stagnating/unknown Yes/no/unknown Yes/no/unknown Yes/no/unknown Yes/no/unknown		Trace Temate	
Pancreas disorders in family history: AP/CP/AIP/PC Other diseases in family history (b) Personal medical history Known diseases Abdominal surgery New medications taken in the last 2 weeks Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Any other event in the last 2 weeks Has the patient had any examination concerning abdominal pain? Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Continuity Number of hours/unknown Forced posture Nature (b) In the case of abdominal pain lasting longer than 48 hours Yes/no/unknown Yes/no/unknown; if yes: description of it yes/no/unknown Diffuse/localized/unknown Yes/no/unknown; if yes: description of it yes/no/unknown Tendency Decreasing/intensifying/stagnating/unknown Diffuse/localized/unknown Diffuse/localized/unknown; if localized: region (1-9) Wes everyday activity influenced? Yes/no/unknown			
Other diseases in family history (b) Personal medical history Known diseases Abdominal surgery New medications taken in the last 2 weeks Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Any other event in the last 2 weeks Has the patient had any examination concerning abdominal pain? Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Continuity Continuity (b) In the case of abdominal pain lasting longer than 48 hours Wes 'no/unknown, if yes: description of them yes/no/unknown, if yes: description of it Yes/no/unknown Yes/no/unknown, if yes: description of it Yes/no/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/ unknown Continuity (c) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown Yes/no/unknown Yes/no/unknown Yes/no/unknown if yes: description of them yes/no/unknown, if yes: description of it Yes/no/unknown Yes/no/unknown Yes/no/unknown Decreasing/intensifying/stagnating/ unknown Continuous/intermitting/changing/ unknown Yes/no/unknown Yes/no/unknown Yes/no/unknown			
Known diseases Abdominal surgery New medications taken in the last 2 weeks Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Any events event in the last 2 weeks Any other event in the last 2 weeks Yes/no/unknown, if yes: description of it Yes/no/unknown Number of hours/unknown Number: 1-10 scale/unknown Decreasing/intensifying/stagnating/unknown Continuity Continuous/intermitting/changing/unknown Forced posture Number of hours/unknown Decreasing/intensifying/stagnating/unknown Decreasing/intensifying/stagnating/unknown Decreasing/intensifying/stagnating/unknown Decreasing/intensifying/stagnating/unknown The case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	Other diseases in family history	Yes/no/unknown, if yes: description of	
Abdominal surgery New medications taken in the last 2 weeks Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Change in the environment of the child in the last 2 weeks Any other event in the last 2 weeks Any other event in the last 2 weeks Any other event in the last 2 weeks Any other action of it Yes/no/unknown, if yes: description of it Number of months/unknown if yes: description of it Yes/no/unknown, if yes: description of it Yes/no/unknown, if yes: description of it Number of perast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Tendency Continuity Number of hours/unknown Decreasing/intensifying/stagnating/unknown Decreasing/intensifying/stagnating/unknown Porced posture Yes/no/unknown Oull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	(b) Personal medical history		
Abdominal surgery New medications taken in the last 2 weeks Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Change in the environment of the child in the last 2 weeks Any other event in the last 2 weeks Any other of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Tendency Continuity Number of hours/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/ unknown Continuity Continuous/intermitting/changing/ unknown Forced posture Nature Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	Known diseases	· · · · · · · · · · · · · · · · · · ·	
New medications taken in the last 2 weeks Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Change in the environment of the child in the last 2 weeks Any other event in the last 2 weeks Yes/no/unknown, if yes: description of it Yes/no/unknown, if yes: description of it Number of months/unknown Intensity Tendency Number of months/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/unknown Decreasing/intensifying/stagnating/unknown Continuous/intermitting/changing/unknown Yes/no/unknown Porced posture Yes/no/unknown Dull/sharp/cramping/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	Abdominal surgery	* *	
Medications taken regularly New symptoms, diagnosed diseases in the last 2 weeks New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Change in the environment of the child in the last 2 weeks Any other event in the last 2 weeks Any other event in the last 2 weeks Has the patient had any examination concerning abdominal pain? Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Continuity Continuity Number of hours/unknown Decreasing/intensifying/stagnating/unknown Tendency Continuous/intermitting/changing/unknown Nature Dull/sharp/cramping/unknown Diffuse/localized/unknown; if yes: description of it Yes/no/unknown, if yes: description of it Yes/no/unknown if yes: description of it Yes/no/unknown Number of hours/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/unknown Continuous/intermitting/changing/unknown Dull/sharp/cramping/unknown Dull/sharp/cramping/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	New medications taken in the last 2 weeks	Yes/no/unknown, if yes: description of	
New diet, change in diet in the last 2 weeks Any events strongly affecting the child emotionally in the last 2 weeks Change in the environment of the child in the last 2 weeks Any other event in the last 2 weeks Has the patient had any examination concerning abdominal pain? Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Tendency Continuity Continuity Number of hours/unknown Forced posture Nature Location (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Tes/no/unknown, if yes: description of it Yes/no/unknown, if yes: description of it Number of months/unknown Number of months/unknown Number of hours/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/ unknown Continuous/intermitting/changing/ unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9)	Medications taken regularly	Yes/no/unknown, if yes: description of	
Any events strongly affecting the child emotionally in the last 2 weeks Change in the environment of the child in the last 2 weeks Any other event in the last 2 weeks Has the patient had any examination concerning abdominal pain? Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Tendency Continuity Continuity Number of hours/unknown Poerceasing/intensifying/stagnating/unknown Continuous/intermitting/changing/unknown Forced posture Nature Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	New symptoms, diagnosed diseases in the last 2 weeks	* *	
Weeks Change in the environment of the child in the last 2 weeks Any other event in the last 2 weeks Has the patient had any examination concerning abdominal pain? Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Tendency Continuity Continuity Continuity Forced posture Nature Nature Location Newhow, if yes: description of it Yes/no/unknown, if yes: description of it Number of months/unknown Number of hours/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/unknown Continuous/intermitting/changing/unknown Yes/no/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown Yes/no/unknown		Yes/no/unknown, if yes: description of it	
Change in the environment of the child in the last 2 weeks Any other event in the last 2 weeks Yes/no/unknown, if yes: description of it Yes/no/unknown Number of hours/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/ unknown Continuous/intermitting/changing/ unknown Yes/no/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown		Yes/no/unknown, if yes: description of it	
Any other event in the last 2 weeks Has the patient had any examination concerning abdominal pain? Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Tendency Continuity Continuity Forced posture Nature Location (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown, if yes: description of it Yes/no/unknown Number of months/unknown Number of hours/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/ unknown Continuous/intermitting/changing/ unknown Yes/no/unknown; if localized: region (1-9) Yes/no/unknown Yes/no/unknown	Change in the environment of the child in the last 2 weeks		
Has the patient had any examination concerning abdominal pain? Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Tendency Continuity Continuity Forced posture Nature Location Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown Yes/no/unknown Yes/no/unknown Yes/no/unknown; if localized: region (1-9)	e		
Length of breast milk feeding 3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? Intensity Number: 1–10 scale/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/ unknown Continuity Continuity Continuous/intermitting/changing/ unknown Forced posture Yes/no/unknown Nature Dull/sharp/cramping/unknown Location Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown			
(a) Abdominal pain How many hours have passed since the pain started? Intensity Tendency Continuity Continuity Forced posture Nature Location (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/ unknown Continuous/intermitting/changing/ unknown Yes/no/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) Yes/no/unknown		* *	
How many hours have passed since the pain started? Intensity Tendency Continuity Continuity Forced posture Nature Location (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Number of hours/unknown Number: 1–10 scale/unknown Decreasing/intensifying/stagnating/ unknown Continuous/intermitting/changing/ unknown Yes/no/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) Yes/no/unknown	3. Complaints, symptoms		
Intensity Tendency Decreasing/intensifying/stagnating/ unknown Continuity Continuous/intermitting/changing/ unknown Forced posture Nature Location Dull/sharp/cramping/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	(a) Abdominal pain		
Tendency Decreasing/intensifying/stagnating/ unknown Continuity Continuous/intermitting/changing/ unknown Forced posture Nature Dull/sharp/cramping/unknown Location Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	How many hours have passed since the pain started?	- 1 37 0- 0- 0- 0- 07 07 0 11	
Continuity Continuous/intermitting/changing/ unknown Forced posture Nature Location Location (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? unknown Yes/no/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) Yes/no/unknown	Intensity	Number: 1–10 scale/unknown	
Forced posture Nature Location (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? unknown Yes/no/unknown Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) Yes/no/unknown	Tendency		
Forced posture Nature Location Dull/sharp/cramping/unknown Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	Continuity		
Nature Dull/sharp/cramping/unknown Location Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	Forced posture	*	
Location Diffuse/localized/unknown; if localized: region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	1		
region (1-9) (b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown			
(b) In the case of abdominal pain lasting longer than 48 hours Was everyday activity influenced? Yes/no/unknown	200mion		
Was everyday activity influenced? Yes/no/unknown	(b) In the case of abdominal pain lasting longer than 48 hours		
		Yes/no/unknown	

Table 4. (continued)

Table 4. (continued)	
In which part of the day did the pain appear mostly?	Unrelated/after waking up/in the
	morning/in the afternoon/in the
	evening/at night/unknown
Was it related to eating?	Yes/no/unknown; if yes: before/while/
	after
(c) Other complaints	
Nausea	Yes/no/unknown
Vomiting	Yes/no/unknown; if yes: How many
· ·	times? Content of cast?
Fever	Yes/no/unknown; if yes: Since when?
	Temperature? (C°)
Appetite	Good/retained/bad/unknown
Weight loss	Yes/no/unknown, if yes: How much?
6	(kg), How long has it taken?
	(weeks/months)
Jaundice	Yes/no/unknown
Stool	Normal/diarrhea/constipation/fatty/
5.001	putrid/undigested food/bloody/mucus/
	unknown
4. Physical examination	GIRIO WII
Blood pressure	Number (mmHg)
Heart rate	Number (BPM)
Body weight	Number (kg)
Body height	Number (m)
Respiratory rate	Number (/min)
Body temperature	Number (°C)
Abdominal tenderness	Yes/no, if yes: location of abdominal
Abdoliniai tenderness	tenderness
Abdominal guarding	Yes/no
Jaundice	Yes/no
Bowel sounds	No/hypoactive/normal/hyperactive
5. Laboratory parameters	140/hypodetive/horman/hyperdetive
Amylase and/or lipase	Number (U/l)
6. Imaging examinations	Number (6/1)
Pancreas abnormalities suggesting AP	Yes/no
Pancreas abnormalities suggesting CP	Yes/no
Abdominal US	Yes/no, if yes: description
Abdominal CT scan	Yes/no, if yes: description
	1 es/110, 11 yes. description
7. Diagnosis	
8. Diagnosis – main group	Adminism/disalesses disaless
9. Further step	Admission/discharged/other

We aim to analyze patient data in different age groups. Association between each collected parameter and AP will be determined. Statistical analysis will be carried out by data mining methods. The applied methods will be determined based on the main characteristics of the collected data, and the most suitable method – or method combination – will be chosen. The following data mining methods are being contemplated: logistic regression, discriminant analysis, random forest analysis, decision tree, and cluster analysis. ROC (receiver operating characteristic) analysis will be performed to evaluate the predictive power of the classification algorithm.

Four quality control points are established. First, the local clinical research assistant must upload the data electronically and confirm that the data are the same as those in the hard copy. Second, the local institutional principal investigator (who must have a medical doctoral degree) must recheck the uploaded data and confirm their validity and accuracy. Third, the central data administrator, who is based at HPSG headquarters, must control the accuracy, and finally, the trial leader must go through the details. Patients with inadequate or insufficient data will be excluded.

The protocols were introduced at our international meeting held in Szeged in November 2014, which was attended by some of the best-established pediatric pancreatologists. Around 100 clinicians – 60 Hungarians and 40 international investigators from 9 different countries – attended. The trial was discussed and the suggested modifications have been included. The study has been accepted by the scientific committee of the IAP, and is therefore running under the auspices of HPSG and IAP. The PINEAPPLE trial has been registered at the ISRCTN registry (ISRCTN35618458), a primary clinical trial registry recognized by the World Health Organization (WHO) and the International Committee of Medical Journal Editors (ICMJE) which accepts all clinical research studies, providing content validation and curation as well as the unique identification number necessary for publication.

The study received the relevant ethical approval (No.: ad.52857-2/2014) issued by the National Hungarian Ethical Authority (ETT TUKEB) in 2014. Completion of the 'Letter of intent' form is mandatory for registering the participation of each institution. Study management strictly follows the Ethical Guidelines for Observational Studies.

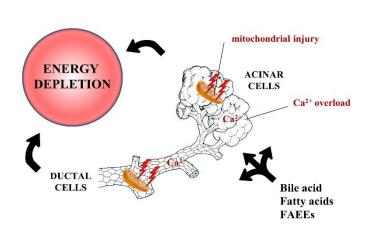
IV.1.4. Expected results

The PINEAPPLE trial is ongoing and expected to be finished by December 2020. The PINEAPPLE-R study will aid understanding of our current clinical practice of APP in children with abdominal pain in different countries and centers. The PINEAPPLE-P study will provide the real incidence of APP and help to establish a fast, simple, and authentic scoring system to evaluate the necessity of pancreatic enzyme tests and abdominal US when a child has abdominal pain. As of the preparation of the thesis, 48,170 patient records have been enrolled into PINEAPPLE-R, and 926 patients have been involved in PINEAPPLE-P.

IV.1.5. Discussion

The '2 out of 3' criterion is used to diagnose AP both in adults and children (abdominal pain, sPEM, and abdominal imaging) (39, 40, 42, 43, 49). Therefore, without measuring serum pancreatic enzymes and/or performing transabdominal imaging, AP may remain undiagnosed.

According to previous pediatric studies in AP, abdominal pain is present in 66 to 95% of the children with AP (57, 105-110); however, inconsistency and high variability exist between the studies. Most of the trials investigating the characteristics of abdominal pain have either low numbers or missing parameters causing inconsistencies between their data. Based on the review of Bai et al. (41), abdominal pain was most commonly localized to the epigastric region (62–89% of cases) (102, 105, 111) and was rarely associated with back pain (<10%) in children with AP (57, 107). Radiation to the back was seen only in 1.6–5.6% (108, 110, 111) of the cases. Diffuse abdominal pain was found in 12–20% of AP patients (105, 108, 110), guarding in 29–37% (105, 107), whereas abdominal distension was reported in 21–46% (105-107, 109, 110). Nausea or vomiting was noted in 40–80% of the AP cases (57, 102, 108-114). Other symptoms might be fever, ascites, pleural effusion, and jaundice. Symptoms of infants and toddlers are much more unspecific: abdominal pain was found in 43%, epigastric tenderness in 57%, and nausea in 29% (102). In a study from Pittsburgh, 16% of the infants and toddlers had abdominal distension and 40% had fever (115).


Based on a report published by Coffey et al., lipase, amylase, abdominal US, and computed tomography (CT) were consistent with the diagnosis of AP only in 93%, 54%, 27% and 67% of cases, respectively (116); however, the diagnostic yield for combinations of blood and imaging tests was higher than any single test and blood tests alone (116).

In summary, diagnosing AP in children can be difficult and easily missed. Therefore, a large, international prospective cohort is necessary to understand the complaints and symptoms of AP in children. We have proposed an international observational clinical trial to collect a critical mass of data from children with abdominal pain in order to develop an EBM guideline concerning the necessity for obtaining serum pancreatic enzyme testing and abdominal US in pediatric patients who present at the emergency room with abdominal pain.

IV.2. EARLY ENTERAL NUTRITION IN ACUTE PEDIATRIC PANCREATITIS

IV.2.1. Introduction

Common characteristics in both age groups are that no specific therapy is available to treat AP, and the general supportive treatment at the early phase of the disease frequently consists of volume resuscitation and NPO diet (38, 39, 42, 43, 117). Although there is clear evidence in the literature that appropriate volume therapy is beneficial, the latter treatment is questionable.

Fig. 12. Early events in acute pancreatitis. Bile acids, fatty acids or non-oxidative ethanol metabolites (fatty acid ethyl esters, FAEEs) induce calcium overload, causing mitochondrial damage and a resultant decrease in intracellular adenosine triphosphate (ATP) concentration both in acinar and ductal cells. This will lead to general energy depletion in the pancreas.

One of the main reasons for the debate is that the pathogenesis of the disease clearly suggests the opposite. Irrespective of the etiological factors, mitochondrial damage and energy depletion are the leading intracellular responses in the early phase of the disease in the exocrine pancreas (11, 13, 91, 118). Bile acids (7-10), fatty acids, and non-oxidative ethanol metabolites (FAEEs)

(11-16) were shown to elevate the intracellular Ca²⁺ concentration, causing mitochondrial damage and a resultant decrease of intracellular ATP concentration (Fig. 12). This leads to inhibited fluid and bicarbonate secretion and dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl⁻ channel in the ductal cells with resultant secretory block and intrapancreatic trypsinogen activation (11, 12, 119, 120). In addition, hypercatabolism secondary to pancreatic and extrapancreatic inflammation further aggravates the energy deficit (121). Consequently, restoration of ATP level both in acinar and ductal cells prevents (at least in part) the toxic effect of the harmful causative factors noted above (91, 122, 123). These data strongly suggest that early energy supply should be favorable for AP patients compared to nil energy. Moreover, energy supply given by enteral nutrition in AP patients was shown to be beneficial as a first-line treatment compared to TPN for several reasons (124, 125): (i) EEN significantly decreases pathogenic bacteria in the stool and alteration of intestinal flora; (ii) gut

plays an important role as a barrier in the immune system and EEN is able to optimize intestinal permeability; (iii) this mucosal barrier integrity decreases the bacterial translocation from the gut, therefore resultant bacteraemia and levels of serum endotoxins are reduced; (iv) EEN has a favorable effect on immune dysregulation caused by SAP which can reduce the rate of pancreatic infection, systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome as well as duration of ICU stay (37, 121, 126). Accordingly, enteral nutrition has been shown to be beneficial regarding visual analogue pain score, LOH, local and systemic infections, local complications, multi organ failure (MOF), need for surgical interventions, and mortality (32-36, 124, 127-139). Additionally, enteral nutrition further improves the outcome of AP if it is started within 48-72 hours (37, 39, 124, 132, 140, 141). The type of enteral nutrition is administered based on disease severity (141, 142).

Furthermore, enteral nutrition has already been proven to be beneficial in other inflammatory gastrointestinal diseases. The first-line recommendation to induce remission in pediatric Crohn's disease is exclusive enteral nutrition (143). Enteral nutrition could also be effective in the maintenance of pediatric inflammatory bowel disease remission (144).

Regarding AP, three of the recent and most up-to-date guidelines for AP in adults have shown the positive effect of early enteral tube feeding in moderately severe and SAP (39, 42, 43). Moreover, nasogastric tube feeding was shown to be as safe and as effective as nasojejunal tube feeding in SAP (131, 132, 141, 145, 146). In the case of patients with predicted mild AP, oral feeding is preferred as soon as possible (39, 42, 43, 147). However, no systematic review is available concerning the role of EEN in children.

IV.2.2. Aims

We aimed to review the literature to analyze the effect of EEN versus NPO therapy on the outcome of APP, and to aggregate the information in childhood onset AP, leading to a higher statistical power and more robust point estimate than is possible from the individual studies.

IV.2.3. Methods

The preferred reporting items for systematic review and meta-analysis protocol (PRISMA-P) was followed (148). Our structured literature search was based on the participants, intervention, comparison and outcomes (PICO) format [P: patients under the age of twenty-one suffering from AP; I: EEN (per os/nasogastric- or nasojejunal tube started within

24-48 hours); C: NPO therapy (per os/nasogastric- or enteral tube started after 24-48 hours); O: length of hospitalization, need for ICU, complications, necessity of antibiotics, surgical/non-surgical interventions, and mortality].

In February 2016, a literature search was performed on the PubMed (http://www.ncbi.nlm.nih.gov/pubmed) and EMBASE (https://www.embase.com) databases using the following Medical Subject Headings and search terms: "pediatric" OR "paediatric" AND "pancreatitis". The search was limited to human studies, full-text publications with abstracts in English with no time period, resulting in 632 articles altogether (PubMed: 131; EMBASE: 501). The articles were checked separately. Meta-analyses, reviews, case reports and articles on CP were excluded and duplicates were removed (Fig. 13). Potentially eligible papers were selected, and finally five of them with relevant data on EEN or with NPO therapy

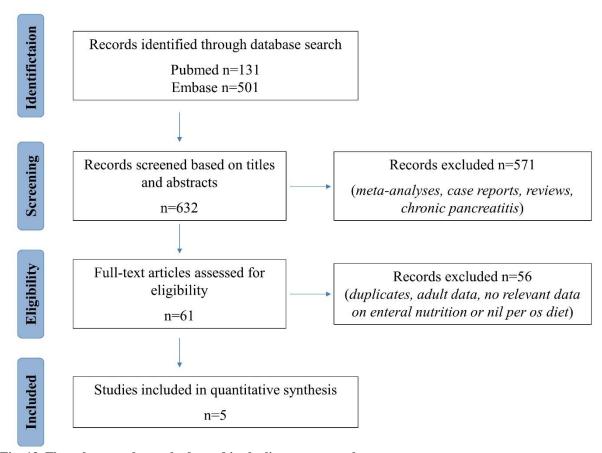


Fig. 13. Flow chart on the methods used in the literature search.

in APP in patients under 21 years old were included (Table 5). Details in the collected articles were checked, and only articles where both EEN and NPO were presented separately were used. Two articles met this criterion which contained three separate data pairs, where EEN was

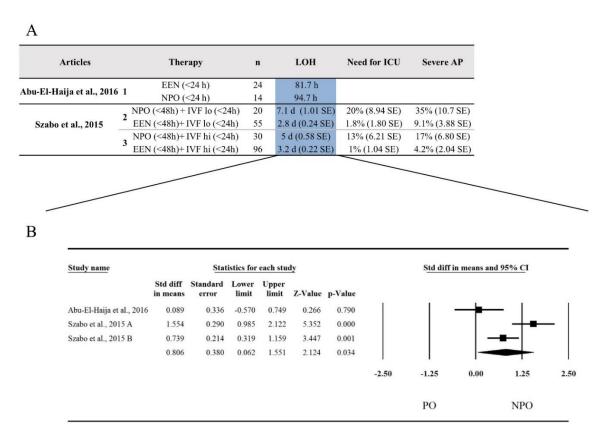

compared to NPO (Fig. 14A). The following parameters were collected: LOH, need for treatment at ICU, and development of SAP. Only one of the three investigated parameters (LOH) contained a minimum of three items, which were analyzed statistically.

Table 5. Studies included in the quantitative synthesis. EEN=early enterals nutrition; NPO=nil per os; IVF=intravenous fluid; lo=low; hi=high.

Ref.	Data	Groups	n
Abu-El-Haija et al., 2016 (149)	TIO.	EEN	24
Abu-El-Haija et al., 2010 (149)	yes	NPO	14
Flores-Calderón et al., 2009 (150)			18
Goh et al., 2003 (113)			12
Raizner et al., 2013 (151)			7
	TIO.	EEN + IVF lo	55
	yes	NPO + IVF lo	20
Szabo et al., 2015 (152)		EEN + IVF hi	96
	yes	NPO + IVF hi	30

The meta-analytic calculation was made with Comprehensive MetaAnalysis (V3) software using the random effects model (the DerSimonian-Laird method). We calculated a weighted standard

difference in means and 95% CI. In the case of one study (Abu-El-Haija *et al.*, 2016 (149)), we converted the median and range values to means and standard deviation using the modified Hozo's formula by Wan *et al.*, 2014 (153). For a visual inspection, we used a forest plot.

Fig. 14. Two articles containing three separate data pairs. A) Collected parameters. **B)** Forest plot analyses on length of hospitalization (LOH). EEN=early enteral nutrition; NPO=nil per os; IVF=intravenous fluid; lo=low; hi=high; ICU=intensive care unit; AP=acute pancreatitis; PO=per os.

IV.2.4. Results

Fig. 14A shows the parameters collected from the articles. It was only possible to perform forest plot analyses on LOH (Fig. 14B). EEN significantly decreased LOH (SD= 0.806, p = 0.034) compared to the standard NPO diet in case of APP.

IV.2.5. Discussion

Several therapeutic recommendations are available in the literature on nutrition in AP. The IAP/APA guideline suggests enteral tube feeding as the first-line therapy in patients with predicted SAP, and oral feeding in the case of predicted mild AP (39). According to the Japanese guideline, enteral nutrition can decrease the incidence of complications and elevate the survival rate in the early phase of SAP (43). Recent meta-analysis of adult studies revealed that EEN decreases mortality, rate of interventions, and the incidence of MOF in SAP. Moreover, group analysis of 17 parameters including laboratory parameters (such as CRP and WBC) and symptoms (such as pain or presence of SIRS) suggested that EEN also has merits in mild AP (34).

Since the incidence of APP has risen in the past twenty years (3.6 and 13.2 per 100,000 children affected annually), we systematically reviewed the literature to understand whether there is any beneficial effect of EEN versus NPO therapy in children (51, 52). We faced several difficulties during our review: (i) APP is still underdiagnosed, thus decreasing the possibility of performing clinical trials; (ii) the number of studies on the management of these patients is very low, and there is still only a small number of studies focused on understanding the characteristics of the childhood onset disease (154); (iii) studies have not focused on the early management of the patients, therefore the groups were not separated; and finally, (iv) the quality of the methods sections and data presentation in these articles is very low. Consequently, in many cases it was impossible to obtain quality analyzable data from the articles for proper broad-spectrum meta-analysis. By the end of the search, we identified five articles containing relevant data on nutritional management during the early phase of APP. Raizner et al. (151) published a retrospective analysis involving seven children with necrotizing pancreatitis. All the children received a strict NPO diet for 1-11 days, five patients received TPN for 8-18 days, and just one patient was treated with nasojejunal feeding for 7 days. All the children required intensive supportive treatment and a prolonged hospital stay (with a mean of 20 days) because of the complications. Goh et al (113) included twelve patients in their retrospective study. One patient needed a distal pancreatectomy, and eleven patients recovered with conservative management. Three patients received TPN, and eight patients were kept on bowel rest and nasogastric aspiration. Two patients had acute complications, and two patients had recurrent AP. Flores-Calderon et al (150) studied eighteen patients with AP caused by L-asparaginase due to acute lymphoblastic leukemia. All the patients were treated with bowel resting for a mean of 22 days (range: from 3-66 days), fourteen of the patients received TPN, and four had an elementary diet. Two of the patients required ICU admission, and local complications developed in twelve patients. None of the patients died from complications related to AP. On the contrary, data published by Wang et al. in 2020 confirmed that enteral feeding is safe and tolerable in asparaginase-induced APP based on data from twelve patients (155). Seven patients received nasojejunal tube feeding, and oral feeding was started after 5-7 days in five patients. Pseudocyst and pancreatic duct stricture were found only in two cases, and one patient required continuous renal replacement therapy among patients with nasojejunal tube feeding without any death related to AP. Although the three included studies mentioned above point out several disadvantages of the NPO diet, none of them could be enrolled in our meta-analysis. Finally, it was possible to collect three sets of analyzable data pairs where both NPO and EEN were present. Abu-El-Haija et al (149) conducted a prospective study of 33 patients (38 admissions) suffering from mild AP, and retrospectively investigated the relationship of nutrition with abdominal pain and LOH. EEN feeding meant per os feeding, and NPO was identified as oral feeding not being allowed for 24 hours. Importantly, EEN, even with high fat intake, did not cause elevation in pain in children, suggesting that EEN is a well tolerable nutritional possibility in children. The fact that LOH was shorter in the EEN group versus the NPO group points to EEN as a better way of treating APP. The most advanced study was performed by Szabo et al (152), where several parameters were collected to understand the effect of EEN on the course of APP. A total of 201 patients suffering from mild AP on admission were enrolled retrospectively. They compared EEN versus NPO both with and without aggressive fluid resuscitation. Fluid therapy was administered during the first 24 hours, and the type of nutrition was determined during the first 48 hours. Besides the beneficial effects of EEN on LOH, they also showed that EEN reduced the severity of the disease and the rate of ICU transfer.

Although our aim was to perform a meta-analysis on several parameters to understand the differences between EEN and NPO in childhood onset AP, we were only able to perform the statistical analysis on LOH, which suggested that EEN is not only a safe method of nutrition but also substantially decreases LOH, resulting in a better and less expensive treatment of APP (152).

The first randomized control trial on early oral feeding in APP was published in 2020 by Ledder et al (156). A total of 33 patients were randomly assigned to initial fasting or an immediate, unrestricted diet. There was no significant difference in the time elapsed until ready for discharge, pain free status, serum amylase or lipase levels at discharge. Moreover, weight was significantly higher in the early feeding group at follow-up. These data confirm our results, that early oral feeding is not only a safe method of nutrition, but also has benefits.

IV.3. CONCLUSION

Based on our current knowledge, there are remarkable differences between childhood and adult onset AP (41, 53, 54, 157). However, the majority of the current pediatric guidelines are adopted from adult data (40, 45-47). Therefore, prospective observational and interventional pediatric clinical trials would be necessary to understand the differences between childhood and adult onset AP and to be able to provide appropriate patient care to children suffering from AP. However, most of the pediatric cohorts are limited as a result of the low incidence of AP and small sample size, which is particularly due to missing evidence-based diagnostic guidelines and lower awareness of AP among pediatricians. Consequently, the HPSG aimed to solve this unmet need and established the PINEAPPLE study to estimate the real incidence of AP in children, and to create an evidence-based diagnostic guideline for APP. Additionally, not only diagnostic, but also therapeutic guidelines for childhood onset AP are based on adult data. EEN was proven to be beneficial for treating AP in adults compared to NPO and TPN therapy. Therefore, we aimed to collect all the relevant data on EEN in APP from the literature to achieve a higher level of evidence in childhood as well. Our meta-analysis suggests that EEN should have priority in treating APP compared to NPO therapy, and confirmed the necessity of further clinical trials in children.

V. SUMMARY AND NEW DISCOVERIES

Chapter III: Dose-dependent effect of hypertriglyceridemia on acute pancreatitis

- 1. Although we confirmed that biliary etiology is less common with HTG-AP, HTG-AP was associated with biliary etiology in 5.4%, but with alcoholic etiology in 38.2%.
- 2. HTG was significantly and dose-dependently linked to younger age, male gender, obesity and pre-existing DM in AP patients.
- 3. Amylase and lipase levels have shown a significant and dose-dependent reduction with the elevation of TG in AP.
- 4. Our analysis has shown that local complications and organ failure were significantly and dose-dependently increased by HTG in AP.
- 5. TG level above 11.3 mmol/l was associated with a significantly higher rate of moderately severe AP and longer hospital stay, whereas TG level above 22.6 mmol/l was significantly related to SAP as well.
- 6. Our data suggest that lipid-lowering therapy may be important clinically at a much lower TG level in HTG-AP patients than we previously thought.

Chapter IV: Children are not small adults

The PINEAPPLE study will help to estimate the real incidence of AP in children and create evidence-based diagnostic guidelines for APP.

Our meta-analysis: (i) proves that EEN shortens the LOH in the case of AP not only in adults, but also in children; (ii) suggests that EEN is safe and should have priority in treating APP compared to NPO therapy, and; (iii) confirms the necessity of further interventional clinical trials in children.

VI. CONTRIBUTION

During my PhD work, we aimed to improve the clinical practice of AP in children and adults. This has allowed me to learn the clinical methodologies of study design, observational clinical trial, meta-analysis, and cohort analysis.

VI.1. Mosztbacher et al. Pancreatology, 2020.

I took part in the study design, data analysis and data interpretation, and I wrote the article with the contributions of Péter Hegyi and Andrea Párniczky. Furthermore, figures were created by myself and Lilla Hanák. I contributed to the patient involvement in the AP registry operated by the HPSG.

VI.2. Mosztbacher et al. World J Gastroenterol, 2017.

I contributed to the study design and data interpretation, and I wrote the article with the help of Péter Hegyi and Andrea Párniczky. Furthermore, figures were created by myself and Nelli Farkas.

VI.3. Zsoldos et al. Digestion, 2016

As the principle investigator of the study, I am responsible for making presentations at national and international conferences in order to involve as many centers as possible. In addition, I organize and maintain relations with the enrolled centers and provide the professional supervision of the study. I have enrolled 133 patients to the PINEAPPLE-P and 2 centers to the PINEAPPLE-R studies. I am responsible for data control and data analysis of both subtrials.

VII. ACKNOWLEDGEMENT

First, I would like to thank my supervisor **Péter Hegyi**, for his support. He managed my scientific studies and assisted my work with his advice and experience. I would also like to express my thanks to **Andrea Párniczky**, who convinced me to join the HPSG and begin my scientific work, and then supported me as a supervisor. Furthermore, I would like to thank **Miklós Sahin-Tóth** and **Jonas Rosendahl** for the opportunity to widen my knowledge and do basic research in the field of pancreas genetics.

I am also grateful to the interdisciplinary research unit led by **Andrea Szentesi**. My PhD work would not have been possible without the work of administrators, patient coordinators, local clinical investigators, and biobank leaders of the **HPSG** and the **Institute for Translational Medicine**, **University of Pécs**. Furthermore, I would like to thank **Nelli Farkas** and **Lilla Hanák** for their help in the statistical calculations.

My deepest gratefulness goes to **my parents and my family** who supported me during my studies and research work. I would also like to thank my close **friends** who always assured me that I would be able to manage and finish my PhD work.

VIII. REFERENCES

- 1. Chatila AT, Bilal M, Guturu P. Evaluation and management of acute pancreatitis. World journal of clinical cases. 2019;7(9):1006.
- 2. Peery AF, Crockett SD, Murphy CC, Lund JL, Dellon ES, Williams JL, et al. Burden and cost of gastrointestinal, liver, and pancreatic diseases in the United States: update 2018. Gastroenterology. 2019;156(1):254-72. e11.
- 3. Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology. 2013;144(6):1252-61.
- 4. Khatua B, El-Kurdi B, Singh VP. Obesity and pancreatitis. Current opinion in gastroenterology. 2017;33(5):374-82.
- 5. Trikudanathan G, Wolbrink DR, van Santvoort HC, Mallery S, Freeman M, Besselink MG. Current concepts in severe acute and necrotizing pancreatitis: an evidence-based approach. Gastroenterology. 2019;156(7):1994-2007. e3.
- 6. Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut. 2013;62(1):102-11.
- 7. Hegyi P. Bile as a key aetiological factor of acute but not chronic pancreatitis: a possible theory revealed. The Journal of physiology. 2016;594(21):6073.
- 8. Venglovecz V, Hegyi P, Rakonczay Z, Tiszlavicz L, Nardi A, Grunnet M, et al. Pathophysiological relevance of apical large-conductance Ca2+-activated potassium channels in pancreatic duct epithelial cells. Gut. 2011;60(3):361-9.
- 9. Venglovecz V, Rakonczay Z, Ozsvari B, Takacs T, Lonovics J, Varro A, et al. Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. Gut. 2008;57(8):1102-12.
- 10. Voronina SG, Gryshchenko OV, Gerasimenko OV, Green AK, Petersen OH, Tepikin AV. Bile acids induce a cationic current, depolarizing pancreatic acinar cells and increasing the intracellular Na+ concentration. Journal of Biological Chemistry. 2005;280(3):1764-70.
- 11. Hegyi P, Petersen OH. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology. Reviews of Physiology, Biochemistry and Pharmacology, Vol 165: Springer; 2013. p. 1-30.

- 12. Maléth J, Balázs A, Pallagi P, Balla Z, Kui B, Katona M, et al. Alcohol disrupts levels and function of the cystic fibrosis transmembrane conductance regulator to promote development of pancreatitis. Gastroenterology. 2015;148(2):427-39. e16.
- 13. Maléth J, Hegyi P, Rakonczay Jr Z, Venglovecz V. Breakdown of bioenergetics evoked by mitochondrial damage in acute pancreatitis: Mechanisms and consequences. Pancreatology. 2015;15(4):S18-S22.
- 14. Criddle DN. The role of fat and alcohol in acute pancreatitis: a dangerous liaison. Pancreatology. 2015;15(4):S6-S12.
- 15. Hegyi P, Rakonczay Jr Z. The role of pancreatic ducts in the pathogenesis of acute pancreatitis. Pancreatology. 2015;15(4):S13-S7.
- 16. Maléth J, Hegyi P. Calcium signaling in pancreatic ductal epithelial cells: an old friend and a nasty enemy. Cell calcium. 2014;55(6):337-45.
- 17. Navina S, Acharya C, DeLany JP, Orlichenko LS, Baty CJ, Shiva SS, et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Science translational medicine. 2011;3(107):107ra10-ra10.
- 18. Yadav D, Pitchumoni C. Issues in hyperlipidemic pancreatitis. Journal of clinical gastroenterology. 2003;36(1):54-62.
- 19. Baranyai T, Terzin V, Vajda Á, Wittmann T, Czakó L. Hypertriglyceridemia causes more severe course of acute pancreatitis. Clinical Lipidology. 2012;7(6):731-6.
- 20. Kiss L, Für G, Mátrai P, Hegyi P, Ivány E, Cazacu IM, et al. The effect of serum triglyceride concentration on the outcome of acute pancreatitis: systematic review and meta-analysis. Scientific reports. 2018;8(1):14096.
- 21. Nawaz H, Koutroumpakis E, Easler J, Slivka A, Whitcomb DC, Singh VP, et al. Elevated serum triglycerides are independently associated with persistent organ failure in acute pancreatitis. The American journal of gastroenterology. 2015;110(10):1497.
- 22. Tai W-P, Lin X-C, Liu H, Wang C-H, Wu J, Zhang N-W, et al. A retrospective research of the characteristic of hypertriglyceridemic pancreatitis in Beijing, China. Gastroenterology research and practice. 2016;2016.
- 23. Wang S-H, Chou Y-C, Shangkuan W-C, Wei K-Y, Pan Y-H, Lin H-C. Relationship between plasma triglyceride level and severity of hypertriglyceridemic pancreatitis. PloS one. 2016;11(10):e0163984.
- 24. Zhang R, Deng L, Jin T, Zhu P, Shi N, Jiang K, et al. Hypertriglyceridaemia-associated acute pancreatitis: diagnosis and impact on severity. HPB. 2019.

- 25. Zheng Y, Zhou Z, Li H, Li J, Li A, Ma B, et al. A multicenter study on etiology of acute pancreatitis in Beijing during 5 years. Pancreas. 2015;44(3):409-14.
- 26. Zhu Y, Pan X, Zeng H, He W, Xia L, Liu P, et al. A study on the etiology, severity, and mortality of 3260 patients with acute pancreatitis according to the revised Atlanta classification in Jiangxi, China over an 8-year period. Pancreas. 2017;46(4):504-9.
- 27. Yang AL, McNabb-Baltar J. Hypertriglyceridemia and acute pancreatitis. Pancreatology. 2020.
- 28. Pan Y, Li Y, Gao L, Tong Z, Ye B, Liu S, et al. Development of a novel model of hypertriglyceridemic acute pancreatitis in mice. Scientific reports. 2017;7:40799.
- 29. Goyal H, Smith B, Bayer C, Rutherford C, Shelnut D. Differences in severity and outcomes between hypertriglyceridemia and alcohol-induced pancreatitis. North American journal of medical sciences. 2016;8(2):82.
- 30. Navarro S, Cubiella J, Feu F, Zambon D, Fernandez-Cruz L, Ros E. Hypertriglyceridemic acute pancreatitis. Is its clinical course different from lithiasic acute pancreatitis? Medicina clinica. 2004;123(15):567-70.
- 31. Berger Z, Mancilla C, Tobar E, Morales MP, Baró M, Carrasco M, et al. Acute pancreatitis in Chile: A multicenter study on epidemology, etiology and clinical outcome. Retrospective analysis of clinical files. Pancreatology. 2020.
- 32. Al-Omran M, AlBalawi ZH, Tashkandi MF, Al-Ansary LA. Enteral versus parenteral nutrition for acute pancreatitis. Cochrane database of systematic reviews. 2010(1).
- 33. Petrov MS, van Santvoort HC, Besselink MG, van der Heijden GJ, Windsor JA, Gooszen HG. Enteral nutrition and the risk of mortality and infectious complications in patients with severe acute pancreatitis: a meta-analysis of randomized trials. Archives of Surgery. 2008;143(11):1111-7.
- 34. Marta K, Farkas N, Hegyi P. Meta-analysis of early nutrition: the benefits of enteral feeding compared to a nil per os diet not only in severe, but also in mild and moderate acute pancreatitis. Pancreatology. 2017;17(4):S18.
- 35. Abou-Assi S, Craig K, O'Keefe SJ. Hypocaloric jejunal feeding is better than total parenteral nutrition in acute pancreatitis: results of a randomized comparative study. The American journal of gastroenterology. 2002;97(9):2255-62.
- 36. Petrov MS, McIlroy K, Grayson L, Phillips AR, Windsor JA. Early nasogastric tube feeding versus nil per os in mild to moderate acute pancreatitis: a randomized controlled trial. Clinical nutrition. 2013;32(5):697-703.

- 37. Sun J-K, Mu X-W, Li W-Q, Tong Z-H, Li J, Zheng S-Y. Effects of early enteral nutrition on immune function of severe acute pancreatitis patients. World journal of gastroenterology: WJG. 2013;19(6):917.
- 38. Hritz I, Czakó L, Dubravcsik Z, Farkas G, Kelemen D, Lásztity N, et al. Acute pancreatitis. Evidence based management guidelines of the Hungarian Pancreatic Study Group. Orvosi hetilap. 2015;156(7):244-61.
- 39. IAP WG, Guidelines AAP. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology. 2013;13(4):e1-e15.
- 40. Párniczky A, Abu-El-Haija M, Husain S, Lowe M, Oracz G, Sahin-Tóth M, et al. EPC/HPSG evidence-based guidelines for the management of pediatric pancreatitis. Pancreatology. 2018;18(2):146-60.
- 41. Bai HX, Lowe ME, Husain SZ. What have we learned about acute pancreatitis in children? Journal of pediatric gastroenterology and nutrition. 2011;52(3):262.
- 42. Tenner S, Baillie J, DeWitt J, Vege SS. American College of Gastroenterology guideline: management of acute pancreatitis. American Journal of Gastroenterology. 2013;108(9):1400-15.
- 43. Yokoe M, Takada T, Mayumi T, Yoshida M, Isaji S, Wada K, et al. Japanese guidelines for the management of acute pancreatitis: Japanese Guidelines 2015. Journal of Hepato-Biliary-Pancreatic Sciences. 2015;22(6):405-32.
- 44. Abu-El-Haija M, Uc A, Werlin SL, Freeman AJ, Georgieva M, Jojkić–Pavkov D, et al. Nutritional considerations in pediatric pancreatitis: A position paper from the NASPGHAN pancreas committee and ESPGHAN cystic fibrosis/pancreas working group. Journal of pediatric gastroenterology and nutrition. 2018;67(1):131.
- 45. Abu-El-Haija M, Kumar S, Quiros JA, Balakrishnan K, Barth B, Bitton S, et al. The management of acute pancreatitis in the pediatric population: a clinical report from the NASPGHAN Pancreas Committee. Journal of pediatric gastroenterology and nutrition. 2018;66(1):159.
- 46. Theodoridis X, Grammatikopoulou MG, Petalidou A, Stamouli E-M, Fotiadou I, Gkiouras K, et al. Nutrition Interventions in Pediatric Pancreatitis: Guidelines We Can Trust. Journal of Pediatric Gastroenterology and Nutrition. 2019;69(1):120-5.
- 47. Wall JM. Clinical Guideline Highlights for the Hospitalist: Management of Acute Pancreatitis in the Pediatric Population. Journal of hospital medicine. 2019;14:E1-E2.

- 48. Sellers ZM, Dike C, Zhang K-Y, Giefer MJ, Uc A, Abu-El-Haija M. A Unified Treatment Algorithm and Admission Order Set for Pediatric Acute Pancreatitis. Journal of pediatric gastroenterology and nutrition. 2019;68(6):e109-e11.
- 49. Morinville VD, Husain SZ, Bai H, Barth B, Alhosh R, Durie PR, et al. Definitions of pediatric pancreatitis and survey of current clinical practices: report from INSPPIRE (International Study Group of Pediatric Pancreatitis: In Search for a Cure). Journal of pediatric gastroenterology and nutrition. 2012;55(3):261.
- 50. Abu-El-Haija M, Kumar S, Szabo F, Werlin S, Conwell D, Banks P, et al. Classification of acute pancreatitis in the pediatric population: clinical report from the NASPGHAN pancreas committee. Journal of pediatric gastroenterology and nutrition. 2017;64(6):984-90.
- 51. Morinville VD, Barmada MM, Lowe ME. Increasing incidence of acute pancreatitis at an American pediatric tertiary care center: is greater awareness among physicians responsible? Pancreas. 2010;39(1):5-8.
- 52. Nydegger A, Heine RG, Ranuh R, Gegati-Levy R, Crameri J, Oliver MR. Changing incidence of acute pancreatitis: 10-year experience at the Royal Children's Hospital, Melbourne. Journal of gastroenterology and hepatology. 2007;22(8):1313-6.
- 53. Meyer A, Coffey MJ, Oliver MR, Ooi CY. Contrasts and comparisons between childhood and adult onset acute pancreatitis. Pancreatology. 2013;13(4):429-35.
- 54. Uc A, Husain SZ. Pancreatitis in children. Gastroenterology. 2019;156(7):1969-78.
- 55. Majbar AA, Cusick E, Johnson P, Lynn RM, Hunt LP, Shield JP. Incidence and clinical associations of childhood acute pancreatitis. Pediatrics. 2016;138(3).
- 56. Pohl JF, Uc A. Pediatric pancreatitis. Current opinion in gastroenterology. 2015;31(5):380.
- 57. Werlin SL, Kugathasan S, Frautschy BC. Pancreatitis in children. Journal of pediatric gastroenterology and nutrition. 2003;37(5):591-5.
- 58. Keim V. Role of genetic disorders in acute recurrent pancreatitis. World journal of gastroenterology: WJG. 2008;14(7):1011.
- 59. Whitcomb D. Value of genetic testing in the management of pancreatitis. Gut. 2004;53(11):1710-7.
- 60. Kumar S, Ooi CY, Werlin S, Abu-El-Haija M, Barth B, Bellin MD, et al. Risk factors associated with pediatric acute recurrent and chronic pancreatitis: lessons from INSPPIRE. JAMA pediatrics. 2016;170(6):562-9.

- 61. Liu QY, Abu-El-Haija M, Husain SZ, Barth B, Bellin M, Fishman DS, et al. Risk Factors for Rapid Progression From Acute Recurrent to Chronic Pancreatitis in Children: Report From INSPPIRE. Journal of pediatric gastroenterology and nutrition. 2019;69(2):206-11.
- 62. Abu-El-Haija M, Lowe M, Barth B, Bellin MD, Fishman DS, Freedman S, et al. Pediatric chronic pancreatitis without prior acute or acute recurrent pancreatitis: A report from the INSPPIRE consortium. Pancreatology: official journal of the International Association of Pancreatology (IAP)[et al]. 2020;20(4):781-4.
- 63. Singh VK, Yadav D, Garg PK. Diagnosis and Management of Chronic Pancreatitis: A Review. Jama. 2019;322(24):2422-34.
- 64. Lucidi V, Alghisi F, Dall'Oglio L, D'Apice MR, Monti L, De Angelis P, et al. The etiology of acute recurrent pancreatitis in children: a challenge for pediatricians. Pancreas. 2011;40(4):517-21.
- 65. Abu-El-Haija M, Valencia CA, Hornung L, Youssef N, Thompson T, Barasa NW, et al. Genetic variants in acute, acute recurrent and chronic pancreatitis affect the progression of disease in children. Pancreatology. 2019;19(4):535-40.
- 66. Zsoldos F, Párniczky A, Mosztbacher D, Tóth A, Lásztity N, Hegyi P. Pain in the early phase of pediatric pancreatitis (PINEAPPLE Trial): pre-study protocol of a multinational prospective clinical trial. Digestion. 2016;93(2):121-6.
- 67. Mosztbacher D, Farkas N, Solymár M, Pár G, Bajor J, Szűcs Á, et al. Restoration of energy level in the early phase of acute pediatric pancreatitis. World journal of gastroenterology. 2017;23(6):957.
- 68. Zádori N, Gede N, Antal J, Szentesi A, Alizadeh H, Vincze Á, et al. EarLy elimination of fatty acids iN hypertriglyceridemia-induced acuTe pancreatitis (ELEFANT trial): Protocol of an open-label, multicenter, adaptive randomized clinical trial. Pancreatology. 2019.
- 69. Mosztbacher D, Hanák L, Farkas N, Szentesi A, Mikó A, Bajor J, et al. Hypertriglyceridemia-induced acute pancreatitis: A prospective, multicenter, international cohort analysis of 716 acute pancreatitis cases. Pancreatology. 2020.
- 70. Ford ES, Li C, Zhao G, Pearson WS, Mokdad AH. Hypertriglyceridemia and its pharmacologic treatment among US adults. Archives of Internal Medicine. 2009;169(6):572-8.
- 71. Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. European heart journal. 2019.

- 72. Scherer J, Singh V, Pitchumoni C, Yadav D. Issues in hypertriglyceridemic pancreatitis-an update. Journal of clinical gastroenterology. 2014;48(3):195.
- 73. Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, et al. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism. 2012;97(9):2969-89.
- 74. Párniczky A, Kui B, Szentesi A, Balázs A, Szűcs Á, Mosztbacher D, et al. Prospective, multicentre, nationwide clinical data from 600 cases of acute pancreatitis. PLoS One. 2016;11(10):e0165309.
- 75. Roberts S, Akbari A, Thorne K, Atkinson M, Evans P. The incidence of acute pancreatitis: impact of social deprivation, alcohol consumption, seasonal and demographic factors. Alimentary pharmacology & therapeutics. 2013;38(5):539-48.
- 76. Czakó L, Szabolcs A, Vajda Á, Csáti S, Venglovecz V, Rakonczay Jr Z, et al. Hyperlipidemia induced by a cholesterol-rich diet aggravates necrotizing pancreatitis in rats. European journal of pharmacology. 2007;572(1):74-81.
- 77. Wang Q, Wang G, Qiu Z, He X, Liu C. Elevated Serum Triglycerides in the Prognostic Assessment of Acute Pancreatitis. Journal of clinical gastroenterology. 2017;51(7):586-93.
- 78. Yang N, Li B, Pan Y, Tu J, Liu G, Lu G, et al. Hypertriglyceridaemia delays pancreatic regeneration after acute pancreatitis in mice and patients. Gut. 2019;68(2):378-80.
- 79. Padmanabhan A, Connelly-Smith L, Aqui N, Balogun RA, Klingel R, Meyer E, et al. Guidelines on the use of therapeutic apheresis in clinical practice—evidence-based approach from the writing committee of the American society for apheresis: the eighth special issue. Journal of clinical apheresis. 2019;34(3):171-354.
- 80. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. Journal of chronic diseases. 1987;40(5):373-83.
- 81. Wilsnack RW, Wilsnack SC, Kristjanson AF, Vogeltanz-Holm ND, Gmel G. Gender and alcohol consumption: patterns from the multinational GENACIS project. Addiction. 2009;104(9):1487-500.
- 82. Van Geenen EJ, Van der Peet DL, Bhagirath P, Mulder CJ, Bruno MJ. Etiology and diagnosis of acute biliary pancreatitis. Nature Reviews Gastroenterology & Hepatology. 2010;7(9):495.
- 83. Yourno J, Henry JB. Rapid amylase and lipase determinations by nephelometry. American journal of clinical pathology. 1978;70(1):56-63.

- 84. Fallat RW, Vester JW, Glueck CJ. Suppression of amylase activity by hypertriglyceridemia. Jama. 1973;225(11):1331-4.
- 85. Singh A, Shrestha M, Anand C. Acute pancreatitis with normal amylase and lipase—an ED dilemma. The American journal of emergency medicine. 2016;34(5):940. e5-. e7.
- 86. Sotello D, Rivas AM, Nugent KM, editors. Newly diagnosed acromegaly presenting with hypertriglyceridemic pancreatitis with normal amylase and lipase levels. Baylor University Medical Center Proceedings; 2014: Taylor & Francis.
- 87. Pascual I, Sanahuja A, García N, Vázquez P, Moreno O, Tosca J, et al. Association of elevated serum triglyceride levels with a more severe course of acute pancreatitis: Cohort analysis of 1457 patients. Pancreatology. 2019;19(5):623-9.
- 88. Szentesi A, Párniczky A, Vincze A, Bajor J, Gódi S, Sarlos P, et al. Multiple hits in acute pancreatitis: components of metabolic syndrome synergize each other's deteriorating effects. Frontiers in Physiology. 2019;10:1202.
- 89. Lu Z, Li M, Guo F, Zhang G, Song S, Liu N, et al. Timely Reduction of Triglyceride Levels Is Associated With Decreased Persistent Organ Failure in Hypertriglyceridemic Pancreatitis. Pancreas. 2020;49(1):105-10.
- 90. Yang F, Wang Y, Sternfeld L, Rodriguez J, Ross C, Hayden M, et al. The role of free fatty acids, pancreatic lipase and Ca2+ signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipase-deficient mice. Acta physiologica. 2009;195(1):13-28.
- 91. Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Philosophical Transactions of the Royal Society B: Biological Sciences. 2016;371(1700):20150425.
- 92. Kimura W, Mössner J. Role of hypertriglyceridemia in the pathogenesis of experimental acute pancreatitis in rats. International Journal of Gastrointestinal Cancer. 1996;20(3):177-84.
- 93. Pothoulakis I, Paragomi P, Archibugi L, Tuft M, Talukdar R, Kochhar R, et al. Clinical features of hypertriglyceridemia-induced acute pancreatitis in an international, multicenter, prospective cohort (APPRENTICE consortium). Pancreatology. 2020.
- 94. Balachandra S, Virlos I, King N, Siriwardana H, France M, Siriwardena A. Hyperlipidaemia and outcome in acute pancreatitis. International journal of clinical practice. 2006;60(2):156-9.

- 95. Deng L-H, Xue P, Xia Q, Yang X-N, Wan M-H. Effect of admission hypertriglyceridemia on the episodes of severe acute pancreatitis. World journal of gastroenterology: WJG. 2008;14(28):4558.
- 96. Lowe ME, Greer JB. Pancreatitis in children and adolescents. Current gastroenterology reports. 2008;10(2):128.
- 97. Joergensen M, Brusgaard K, Crüger DG, Gerdes A-M, de Muckadell OBS. Incidence, prevalence, etiology, and prognosis of first-time chronic pancreatitis in young patients: a nationwide cohort study. Digestive diseases and sciences. 2010;55(10):2988-98.
- 98. Satoh K, Shimosegawa T, Masamune A, Hirota M, Kikuta K, Kihara Y, et al. Nationwide epidemiological survey of acute pancreatitis in Japan. Pancreas. 2011;40(4):503-7.
- 99. Yadav D, Lowenfels AB. Trends in the epidemiology of the first attack of acute pancreatitis: a systematic review. Pancreas. 2006;33(4):323-30.
- 100. Lopez MJ. The changing incidence of acute pancreatitis in children: a single-institution perspective. The Journal of pediatrics. 2002;140(5):622-4.
- 101. Dhroove G, Chogle A, Saps M. A million-dollar work-up for abdominal pain: is it worth it? Journal of pediatric gastroenterology and nutrition. 2010;51(5):579-83.
- 102. Park AJ, Latif SU, Ahmad MU, Bultron G, Orabi AI, Bhandari V, et al. A comparison of presentation and management trends in acute pancreatitis between infants/toddlers and older children. Journal of pediatric gastroenterology and nutrition. 2010;51(2):167.
- 103. Abu-El-Haija M, Palermo JJ, Fei L, Lin TK. Variability in pancreatitis care in pediatrics: a single institution's survey report. Pancreas. 2016;45(1):40-5.
- 104. Di Lorenzo C, Colletti RB, Lehmann HP, Boyle JT, Gerson WT, Hyams JS, et al. Chronic abdominal pain in children: a clinical report of the American Academy of Pediatrics and the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition: American Academy of Pediatrics Subcommittee on Chronic Abdominal Pain and NASPGHAN Committee on Abdominal Pain. Journal of pediatric gastroenterology and nutrition. 2005;40(3):245-8.
- 105. Berney T, Belli D, Bugmann P, Beghetti M, Morel P, LeCoultre C. Influence of severe underlying pathology and hypovolemic shock on the development of acute pancreatitis in children. Journal of pediatric surgery. 1996;31(9):1256-61.
- 106. Yeung C-y, Lee H-c, Huang F-y, Ho M-y, Kao H-a, Liang D-c, et al. Pancreatitis in children—experience with 43 cases. European journal of pediatrics. 1996;155(6):458-63.

- 107. Haddock G, Coupar G, Youngson GG, MacKinlay GA, Raine PA. Acute pancreatitis in children: a 15-year review. Journal of pediatric surgery. 1994;29(6):719-22.
- 108. Jordan SC, Ament ME. Pancreatitis in children and adolescents. The Journal of pediatrics. 1977;91(2):211-6.
- 109. Weizman Z, Durie P. Acute pancreatitis in childhood. The Journal of pediatrics. 1988;113(1):24-9.
- 110. Ziegler DW, Long JA, Philippart AI, Klein MD. Pancreatitis in childhood. Experience with 49 patients. Annals of surgery. 1988;207(3):257.
- 111. Tiao M-M, Chuang J-H, Ko S-F, Kuo H-W, Liang C-D, Chen C-L. Pancreatitis in children: clinical analysis of 61 cases in southern Taiwan. Chang Gung medical journal. 2002;25(3):162-8.
- 112. Chen C-F, Kong M-S, Lai M-W, Wang C-J. Acute pancreatitis in children: 10-year experience in a medical center. Acta paediatrica Taiwanica= Taiwan er ke yi xue hui za zhi. 2006;47(4):192-6.
- 113. Goh S, Chui C, Jacobsen A. Childhood acute pancreatitis in a children's hospital. Singapore medical journal. 2003;44(9):453-6.
- 114. Sánchez-Ramírez CA, Larrosa-Haro A, Flores-Martínez S, Sánchez-Corona J, Villa-Gómez A, Macías-Rosales R. Acute and recurrent pancreatitis in children: etiological factors. Acta Paediatrica. 2007;96(4):534-7.
- 115. Kandula L, Lowe ME. Etiology and outcome of acute pancreatitis in infants and toddlers. The Journal of pediatrics. 2008;152(1):106-10. e1.
- 116. Coffey MJ, Nightingale S, Ooi CY. Diagnosing acute pancreatitis in children: what is the diagnostic yield and concordance for serum pancreatic enzymes and imaging within 96 h of presentation? Pancreatology. 2014;14(4):251-6.
- 117. Mirtallo JM, Forbes A, McClave SA, Jensen GL, Waitzberg DL, Davies AR, et al. International consensus guidelines for nutrition therapy in pancreatitis. Journal of Parenteral and Enteral Nutrition. 2012;36(3):284-91.
- 118. Hegyi P, Pandol S, Venglovecz V, Rakonczay Z. The acinar-ductal tango in the pathogenesis of acute pancreatitis. Gut. 2011;60(4):544-52.
- 119. Hegyi P, Wilschanski M, Muallem S, Lukacs GL, Sahin-Tóth M, Uc A, et al. CFTR: a new horizon in the pathomechanism and treatment of pancreatitis. Reviews of Physiology, Biochemistry and Pharmacology Vol 170: Springer; 2016. p. 37-66.

- 120. Pallagi P, Venglovecz V, Rakonczay Jr Z, Borka K, Korompay A, Ózsvári B, et al. Trypsin reduces pancreatic ductal bicarbonate secretion by inhibiting CFTR Cl– channels and luminal anion exchangers. Gastroenterology. 2011;141(6):2228-39. e6.
- 121. Capurso G, Zerboni G, Signoretti M, Valente R, Stigliano S, Piciucchi M, et al. Role of the gut barrier in acute pancreatitis. Journal of clinical gastroenterology. 2012;46:S46-S51.
- 122. Criddle DN, Murphy J, Fistetto G, Barrow S, Tepikin AV, Neoptolemos JP, et al. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology. 2006;130(3):781-93.
- 123. Judák L, Hegyi P, Rakonczay Z, Maléth J, Gray MA, Venglovecz V. Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. Pflügers Archiv-European Journal of Physiology. 2014;466(3):549-62.
- 124. Grant JP. Nutritional support in acute and chronic pancreatitis. Surgical Clinics. 2011;91(4):805-20.
- 125. McClave SA, Heyland DK. The physiologic response and associated clinical benefits from provision of early enteral nutrition. Nutrition in Clinical Practice. 2009;24(3):305-15.
- 126. Flint R, Windsor J. The role of the intestine in the pathophysiology and management of severe acute pancreatitis. Hpb. 2003;5(2):69-85.
- 127. Eckerwall GE, Tingstedt BB, Bergenzaun PE, Andersson RG. Immediate oral feeding in patients with mild acute pancreatitis is safe and may accelerate recovery—a randomized clinical study. Clinical nutrition. 2007;26(6):758-63.
- 128. Kalfarentzos F, Kehagias J, Mead N, Kokkinis K, Gogos C. Enteral nutrition is superior to parenteral nutrition in severe acute pancreatitis: results of a randomized prospective trial. British Journal of Surgery. 1997;84(12):1665-9.
- 129. Li J, Xue G-J, Liu Y-L, Javed MA, Zhao X-L, Wan M-H, et al. Early oral refeeding wisdom in patients with mild acute pancreatitis. Pancreas. 2013;42(1):88-91.
- 130. Petrov MS, Whelan K. Comparison of complications attributable to enteral and parenteral nutrition in predicted severe acute pancreatitis: a systematic review and meta-analysis. British journal of nutrition. 2010;103(9):1287-95.
- 131. Zhu Y, Yin H, Zhang R, Ye X, Wei J. Nasogastric nutrition versus nasojejunal nutrition in patients with severe acute pancreatitis: a meta-analysis of randomized controlled trials. Gastroenterology research and practice. 2016;2016.

- 132. Lodewijkx PJ, Besselink MG, Witteman BJ, Schepers NJ, Gooszen HG, van Santvoort HC, et al. Nutrition in acute pancreatitis: a critical review. Expert review of gastroenterology & hepatology. 2016;10(5):571-80.
- 133. Petrov M, Pylypchuk R, Emelyanov N. Systematic review: nutritional support in acute pancreatitis. Alimentary pharmacology & therapeutics. 2008;28(6):704-12.
- 134. Oláah A, Pardavi G, Beláagyi T, Nagy A, Issekutz Á, Mohamed GE. Early nasojejunal feeding in acute pancreatitis is associated with a lower complication rate. Nutrition. 2002;18(3):259-62.
- 135. Petrov MS, Kukosh MV, Emelyanov NV. A randomized controlled trial of enteral versus parenteral feeding in patients with predicted severe acute pancreatitis shows a significant reduction in mortality and in infected pancreatic complications with total enteral nutrition. Digestive surgery. 2006;23(5-6):336-45.
- 136. Windsor A, Kanwar S, Li A, Barnes E, Guthrie J, Spark J, et al. Compared with parenteral nutrition, enteral feeding attenuates the acute phase response and improves disease severity in acute pancreatitis. Gut. 1998;42(3):431-5.
- 137. Yi F, Ge L, Zhao J, Lei Y, Zhou F, Chen Z, et al. Meta-analysis: total parenteral nutrition versus total enteral nutrition in predicted severe acute pancreatitis. Internal medicine. 2012;51(6):523-30.
- 138. Louie BE, Noseworthy T, Hailey D, Gramlich LM, Jacobs P, Warnock GL. 2004 MacLean–Mueller Prize Enteral or parenteral nutrition for severe pancreatitis: a randomized controlled trial and health technology assessment. Canadian journal of surgery. 2005;48(4):298.
- 139. Wu X-M, Ji K-Q, Wang H-Y, Li G-F, Zang B, Chen W-M. Total enteral nutrition in prevention of pancreatic necrotic infection in severe acute pancreatitis. Pancreas. 2010;39(2):248-51.
- 140. Petrov MS, Pylypchuk RD, Uchugina AF. A systematic review on the timing of artificial nutrition in acute pancreatitis. British Journal of Nutrition. 2008;101(6):787-93.
- 141. Marik PE. What is the best way to feed patients with pancreatitis? Current opinion in critical care. 2009;15(2):131-8.
- 142. Murphy AE, Codner PA. Acute Pancreatitis: Exploring Nutrition Implications. Nutrition in Clinical Practice. 2020.

- 143. Ruemmele F, Veres G, Kolho K-L, Griffiths A, Levine A, Escher J, et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. Journal of Crohn's and Colitis. 2014;8(10):1179-207.
- 144. Penagini F, Dilillo D, Borsani B, Cococcioni L, Galli E, Bedogni G, et al. Nutrition in pediatric inflammatory bowel disease: from etiology to treatment. A systematic review. Nutrients. 2016;8(6):334.
- 145. Eatock F, Chong P, Menezes N, Murray L, McKay C, Carter C, et al. A randomized study of early nasogastric versus nasojejunal feeding in severe acute pancreatitis. American Journal of Gastroenterology. 2005;100(2):432-9.
- 146. Kumar A, Singh N, Prakash S, Saraya A, Joshi YK. Early enteral nutrition in severe acute pancreatitis: a prospective randomized controlled trial comparing nasojejunal and nasogastric routes. Journal of clinical gastroenterology. 2006;40(5):431-4.
- 147. Larino-Noia J, Lindkvist B, Iglesias-García J, Seijo-Ríos S, Iglesias-Canle J, Domínguez-Muñoz J. Early and/or immediately full caloric diet versus standard refeeding in mild acute pancreatitis: a randomized open-label trial. Pancreatology. 2014;14(3):167-73.
- 148. Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. Bmj. 2015;349.
- 149. Abu-El-Haija M, Wilhelm R, Heinzman C, Siqueira BNF, Zou Y, Fei L, et al. Early enteral nutrition in children with acute pancreatitis. Journal of pediatric gastroenterology and nutrition. 2016;62(3):453-6.
- 150. Flores-Calderón J, Exiga-Gonzaléz E, Morán-Villota S, Martín-Trejo J, Yamamoto-Nagano A. Acute pancreatitis in children with acute lymphoblastic leukemia treated with L-asparaginase. Journal of pediatric hematology/oncology. 2009;31(10):790-3.
- 151. Raizner A, Phatak UP, Baker K, Patel MG, Husain SZ, Pashankar DS. Acute necrotizing pancreatitis in children. The Journal of pediatrics. 2013;162(4):788-92.
- 152. Szabo FK, Fei L, Cruz LA, Abu-El-Haija M. Early enteral nutrition and aggressive fluid resuscitation are associated with improved clinical outcomes in acute pancreatitis. The Journal of pediatrics. 2015;167(2):397-402. e1.
- 153. Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC medical research methodology. 2014;14(1):135.

- 154. Párniczky A, Mosztbacher D, Zsoldos F, Tóth A, Lásztity N, Hegyi P. Analysis of pediatric pancreatitis (APPLE trial): pre-study protocol of a multinational prospective clinical trial. Digestion. 2016;93(2):105-10.
- 155. Wang J, Cheng S, Hu L, Huang T, Huang Z, Hu S. Association of asparaginase-associated pancreatitis and ULK2 gene polymorphism. International Journal of Clinical and Experimental Pathology. 2020;13(3):347.
- 156. Ledder O, Duvoisin G, Lekar M, Lopez RN, Singh H, Dehlsen K, et al. Early feeding in acute pancreatitis in children: a randomized controlled trial. Pediatrics. 2020;146(3).
- 157. Abu-El-Haija M, Hornung L, Lin TK, Nathan JD, Thompson T, Vitale DS, et al. Drug induced pancreatitis is the leading known cause of first attack acute pancreatitis in children. Pancreatology. 2020.

I.

Contents lists available at ScienceDirect

Pancreatology

Hypertriglyceridemia-induced acute pancreatitis: A prospective, multicenter, international cohort analysis of 716 acute pancreatitis cases

Dóra Mosztbacher ^{a, b, c}, Lilla Hanák ^b, Nelli Farkas ^d, Andrea Szentesi ^{b, e}, Alexandra Mikó ^f, Judit Bajor ^f, Patrícia Sarlós ^f, József Czimmer ^f, Áron Vincze ^f, Péter Jenő Hegyi ^b, Bálint Erőss ^b, Tamás Takács ^g, László Czakó ^g, Balázs Csaba Németh ^g, Ferenc Izbéki ^h, Adrienn Halász ^h, László Gajdán ^h, József Hamvas ⁱ, Mária Papp ^j, Ildikó Földi ^j, Krisztina Eszter Fehér ^j, Márta Varga ^k, Klára Csefkó ^k, Imola Török ^l, Hunor Pál Farkas ^m, Artautas Mickevicius ⁿ, Elena Ramirez Maldonado ^o, Ville Sallinen ^{p, q}, János Novák ^r, Ali Tüzün Ince ^s, Shamil Galeev ^t, Barnabás Bod ^u, János Sümegi ^v, Petr Pencik ^w, Zsolt Dubravcsik ^x, Dóra Illés ^g, Szilárd Gódi ^y, Balázs Kui ^g, Katalin Márta ^b, Dániel Pécsi ^b, Péter Varjú ^{b, f}, Zsolt Szakács ^b, Erika Darvasi ^e, Andrea Párniczky ^{b, c, z, 1, **}, Péter Hegyi ^{b, e, y, aa, 1, *}, on behalf of the Hungarian Pancreatic Study Group

- ^a First Department of Paediatrics, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- b Institute for Translational Medicine, Szentágothai Research Center, Medical School, University of Pécs, Pécs, Hungary
- ^c Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
- ^d Institute of Bioanalysis, Medical School, University of Pécs, Pécs, Hungary
- ^e Centre for Translational Medicine, First Department of Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
- f First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
- g First Department of Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
- ^h Szent György Teaching Hospital of County Fejér, Székesfehérvár, Hungary
- ⁱ Bajcsy-Zsilinszky Hospital, Budapest, Hungary
- ^j Department of Internal Medicine, Division of Gastroenterology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- k Department of Gastroenterology, Dr. Réthy Pál Hospital of County Békés, Békéscsaba, Hungary
- ¹ County Emergency Clinical Hospital, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, Targu Mures, Romania
- ^m George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mureş, Targu Mureş, Romania
- ⁿ Vilnius University Hospital Santaros Clinics, Clinics of Abdominal Surgery, Nephrourology and Gastroenterology, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
- o Consorci Sanitari Del Garraf, Sant Pere de Ribes, Barcelona, Spain
- P Department of Transplantation and Liver Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- ^q Department of Abdominal Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- r Pándy Kálmán Hospital of County Békés, Gyula, Hungary
- S Hospital of Bezmialem Vakif University, School of Medicine, Istanbul, Turkey
- ^t Saint Luke Clinical Hospital, St. Petersburg, Russia
- ^u Dr. Bugyi István Hospital, Szentes, Hungary
- ^v Borsod-Abaúj-Zemplén County Hospital and University Teaching Hospital, Miskolc, Hungary
- w Centrum Péče o Zažívací Trakt, Vítkovická Nemocnice a.s., Ostrava, Czech Republic
- * Department of Gastroenterology, Bács-Kiskun County Hospital, Kecskemét, Hungary
- ^y Division of Translational Medicine, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary
- ² Department of Gastroenterology, Heim Pál Children's Hospital, Budapest, Hungary
- aa Hungarian Academy of Sciences—University of Szeged, Momentum Gastroenterology Multidisciplinary Research Group, Szeged, Hungary

^{*} Corresponding author. 2nd floor, 12 Szigeti Road, Pécs, 7624, Hungary. PO BOX 99, Pécs, 7601, Hungary.

^{**} Corresponding author. 2nd floor, 12 Szigeti Road, Pécs, 7624, Hungary. PO BOX 99, Pécs, 7601, Hungary. E-mail addresses: a.parniczky@tm-centre.org (A. Párniczky), hegyi.peter@pte.hu (P. Hegyi).

¹ Péter Hegyi and Andrea Párniczky (contributed equally).

ARTICLE INFO

Article history: Received 28 March 2020 Accepted 30 March 2020 Available online 10 April 2020

Keywords: Acute pancreatitis Hypertriglyceridemia Etiology Cohort Severity

ABSTRACT

Background: Hypertriglyceridemia is the third most common cause of acute pancreatitis (AP). It has been shown that hypertriglyceridemia aggravates the severity and related complications of AP; however, detailed analyses of large cohorts are contradictory. Our aim was to investigate the dose-dependent effect of hypertriglyceridemia on AP.

Methods: AP patients over 18 years old who underwent triglyceride measurement within the initial three days were included into our cohort analysis from a prospective international, multicenter AP registry operated by the Hungarian Pancreatic Study Group. Data on 716 AP cases were analyzed. Six groups were created based on the highest triglyceride level (<1.7 mmol/l, 1.7-2.19 mmol/l, 2.2-5.59 mmol/l, 1.3-2.59 mmol/l, 2.2.6 mmol/l).

Results: Hypertriglyceridemia (\geq 1.7 mmol/l) presented in 30.6% of the patients and was significantly and dose-dependently associated with younger age and male gender. In 7.7% of AP cases, hypertriglyceridemia was considered as a causative etiological factor (\geq 11.3 mmol/l); however, 43.6% of these cases were associated with other etiologies (alcohol and biliary). Hypertriglyceridemia was significantly and dose-dependently related to obesity and diabetes. The rates of local complications and organ failure and maximum CRP level were significantly and dose-dependently raised by hypertriglyceridemia. Triglyceride above 11.3 mmol/l was linked to a significantly higher incidence of moderately severe AP and longer hospital stay, whereas triglyceride over 22.6 mmol/l was significantly associated with severe AP as well.

Conclusion: Hypertriglyceridemia dose-dependently aggravates the severity and related complications of AP. Diagnostic workup for hypertriglyceridemia requires better awareness regardless of the etiology of AP.

© 2020 IAP and EPC. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

Hypertriglyceridemia (HTG) affects 10-30% of the general adult population [1,2]. Classifying HTG is complex; both genetic (primary) and environmental (secondary) factors can lead to an elevated triglyceride (TG) level. In rare cases (2%), primary severe HTG (TG \geq 10 mmol/l) may arise as a result of autosomal recessive, monogenic familial chylomicronemia syndrome (FCS, former Type I). However, a majority of severe HTG cases are multifactorial and have polygenic (mixed HTG, former Type V) determinants with additional secondary factors. Mild-to-moderate HTG cases (2-9.9 mmol/l TG) are similarly polygenic with complex genetic susceptibility (former Type IV, Type IIB and Type III) [2-4]. As regards environmental factors, alcohol, positive-energy balanced diet, obesity, uncontrolled diabetes mellitus (DM), renal diseases. pregnancy, hypothyroidism and medications (e.g., estrogen, retinoids, thiazides, and b-blockers) were shown to be responsible for a raised TG level usually with the interaction of genetic susceptibility

HTG is the third most common cause of acute pancreatitis (AP), and it is responsible for up to 15% of AP cases [7–9]. According to the definition, the majority of experts agree that AP related to TG above 5.6 mmol/l should be considered as suspected hypertriglyceridemia-induced acute pancreatitis (HTG-AP) and AP associated with TG over 11.3 mmol/l is confirmed as HTG-AP [4,10]. Importantly, the occurrence of AP increases with the increase in TG level. There is a 5% possibility of developing AP if TG exceeds 11.3 mmol/l, and it rises to 10–20% if TG elevates over 22.6 mmol/l [4]. HTG-AP is of great importance for several reasons: 1) it has shown a rising incidence worldwide as a result of increasing obesity-related dyslipidemia [11,12]; 2) it raises the risk of severe AP and related complications [8,10,12–16]; and 3) there is no evidence-based therapy for it [17–19].

We aimed to perform a cohort analysis for investigating the dose-dependent effect of HTG on AP and providing data for further prospective randomized clinical trials. In our current cohort study, we show clear evidence that TG level dose-dependently worsens the outcome of AP. The rate of local complications is significantly

higher above 5.6 mmol/l, whereas significantly elevated organ failure presents above 11.3 mmol/l TG level, strongly suggesting that TG-lowering therapy can achieve a better outcome of AP at a much lower TG level than we previously thought.

Methods

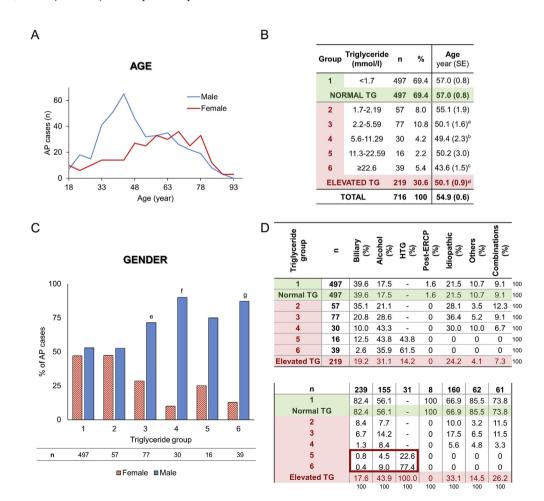
AP patients (n=1435) over 18 years old were enrolled in the prospectively collected international, multicenter AP registry operated by the Hungarian Pancreatic Study Group (HPSG) between 2012 and 2017. Post-hoc cohort analysis was performed on 716 AP cases who underwent TG measurement within 72 h from admission. AP was diagnosed based on the International Association of Pancreatology/American Pancreatic Association (IAP/APA) and HPSG evidence-based guidelines [17,18]. Participating countries are shown in Sup. Fig. 1.

The threshold of the normal TG value was determined at 1.7 mmol/l [6]. Six groups were established based on the Endocrine Society Clinical Practice Guideline and previously published clinical data related to HTG-AP [4,6]: Group 1: <1.7 mmol/l; Group 2: 1.7–2.19 mmol/l; Group 3: 2.2–5.59 mmol/l; Group 4: 5.6–11.29 mmol/l; Group 5: 11.3–22.59 mmol/l; and Group 6: \geq 22.6 mmol/l. To convert TG from mmol/l to mg/dl multiply by 88.57. In case of each variable, elevated TG groups (Groups 2–6) were compared with the normal TG group (Group 1). TG categories were collapsed to three groups (<1.7 mmol/l; 1.7–11.29 mmol/l; \geq 11.3 mmol/l) for the analysis of organ failure because of the low event number.

Seventy-three variables were collected from each AP case as listed in Table S1. The analysis was performed on 42,655/52,268 available data. Local complications, organ failure and severity were defined based on the revised Atlanta classification [20]. The 716 cases investigated have shown the same epidemiological and major outcome distribution as the total cohort (1435 cases), demonstrating that our patients' population represents a normal AP cohort (Sup. Fig. 2).

The registry received ethical permission from the Scientific and Research Ethics Committee of the Medical Research Council (22254—1/2012/EKU) in 2012, and all the patients provided written informed consent to participate. The study protocol conforms to the ethical guidelines of the Declaration of Helsinki updated in 2013 as reflected in a priori approval by the institution's human research committee.

Statistical analysis


Prior to analysis of the dataset, descriptive statistical tools were used to describe the basic characteristics. Mean and standard error of the mean were calculated for continuous variables, whereas the incidence in each group was determined for categorical variables. Depending on the distribution of the data, the independent Student's t-test or Mann—Whitney U test was used to evaluate differences between continuous parameters. The chi-square test or Fisher's exact test was conducted to analyze the relations between the variables. We compared the confidence intervals (CI) of the proportions to investigate differences in the incidence of moderately severe cases between groups. A p-value less than $0.05 \, (\leq 0.05)$ was determined as statistically significance. All analyses were performed using IBM-SPSS Statistical Software Version 25 (IBM Corporation, Armonk, NY, USA).

Results

In our cohort, 30.6% (n = 219) of the patients presented with

elevated TG level (\geq 1.7 mmol/l). HTG was significantly and dose-dependently linked to younger age and male gender (Fig. 1A–C). In 7.7% of AP cases (n = 55), TG level was above 11.3 mmol/l, which is considered as a causative etiological factor [6,10]. In 56.4% of these cases, HTG-AP patients had no other etiology described; however, raised TG level was also accompanied by alcohol in 38.2% of these cases and by biliary etiology in 5.4%, showing that HTG-AP is associated with other etiologies in a substantial number of cases (Fig. 1D).

Data from patients' medical history revealed that HTG is significantly and dose-dependently linked to obesity and DM (Fig. 2B and C); however, there is no relation to chronic pancreatitis (CP) and the Charlson comorbidity index (CCI) [21] (Fig. 2A and D). The amount of previous AP in the medical history was higher in the HTG group compared to the normal TG group (Fig. 2A). General symptoms of AP and physical examination on admission (incidence, duration and intensity of pain, nausea, vomiting, abdominal tenderness and guarding, and blood pressure) have not shown a significant link to elevated TG level (Fig. 3A and B). However, HTG was significantly related to increased heart rate (Fig. 3C). As regards the laboratory parameters on admission showing significant differences with HTG, amylase, lipase, sodium, and calcium were associated inversely; however, glucose, C-reactive protein (CRP), cholesterol, red blood cell count (RBC), hemoglobin, and hematocrit were related parallel with TG level (Fig. 4). On admission laboratory parameters consistent with cholestasis suggested that HTG is less

Fig. 1. Epidemiology and etiology. A) Age distribution of acute pancreatitis (AP) cases in males and females. **B)** Age distribution of triglyceride (TG) groups (a, c, d: p = <0.001; b: p = 0.010). **C)** Gender distribution of triglyceride groups (e: p = 0.002; f, g: p < 0.001). **D)** Etiology. HTG = hypertriglyceridemia; ERCP = endoscopic retrograde cholangiopancreatography.

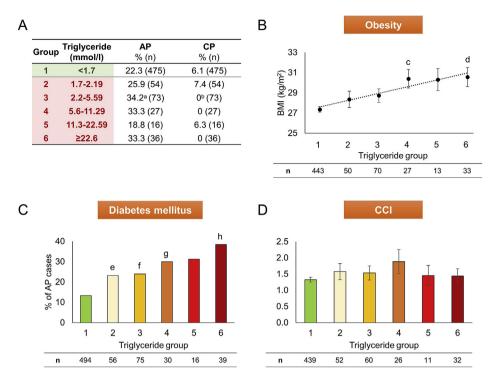


Fig. 2. Medical history of triglyceride groups. A) Acute pancreatitis (AP) and chronic pancreatitis (CP) in patients' medical history (a: p = 0.026; b: p = 0.023). B) Obesity (body mass index (BMI), kg/m^2) (c: p = 0.006; d: p = 0.001). C) Diabetes mellitus in medical history (e: p = 0.046; f: p = 0.016; g: p = 0.026; h: p < 0.001). D) Charlson comorbidity index (CCI). N numbers (n) indicate the total number of cases in each triglyceride group.

Α									
•				Abdominal pain				Abdominal	Abdominal
	Group	Triglyceride (mmol/l)	% (n)	Duration before admission hour±SE (n)	Intensity 1-10±SE (n)	Nausea % (n)	Vomiting % (n)	tenderness % (n)	guarding % (n)
	1	<1.7	98.6 (497)	58.7±5.1 (434)	7.6±0.1 (287)	69.6 (477)	56.3 (485)	86.2 (478)	10.3 (478)
	NOF	RMAL TG	98.6	58.7±5.1	7.6±0.1	69.6	56.3	86.2	10.3
	2	1.7-2.19	98.2 (57)	37.7±7.1 (46)	7.8±0.4 (27)	79.2 (53)	58.2 (55)	81.5 (54)	11.1 (54)
	3	2.2-5.59	100 (77)	50.8±15.1a(67)	7.7±0.3 (42)	66.7 (72)	46.7 (75)	87.8 (74)	12.2 (74)
	4	5.6-11.29	100 (30)	31.6±7.6 (26)	7.8±0.3 (17)	76.7 (30)	60.0 (30)	100 ^b (27)	14.8 (27)
	5	11.3-22.59	100 (16)	32.5±7.8 (15)	8.0±0.5 (8)	62.5 (16)	50.0 (16)	100 (16)	13.3 (15)
	6	≥22.6	100 (39)	49.0±21.5 (33)	7.7±0.5 (19)	61.1 (36)	45.9 (37)	89.2 (37)	10.8 (37)
	ELE\	/ATED TG	99.5	43.1±6.9	7.8±0.2	70.0	51.6	88.9	12.1

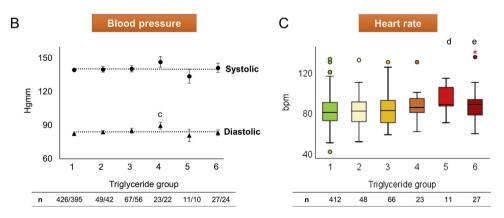


Fig. 3. Symptoms and physical findings on admission in the different triglyceride (TG) groups. A) Incidence, duration before admission and intensity of pain. Nausea, vomiting, abdominal tenderness and abdominal guarding (a: p = 0.025; b: p = 0.036). B) Systolic and diastolic blood pressures (Hgmm) (c: p = 0.012). C) Heart rate (bpm) (d, e: p = 0.010). N numbers (n) indicate the total number of cases in each triglyceride group.

common in cases with biliary etiology. (Sup. Fig. 3). The parallel rise in gamma-glutamyltransferase (γ GT) and TG levels confirms that alcohol consumption is linked to HTG (Sup. Fig. 3D). White blood

cell count (WBC), thrombocyte, lactate dehydrogenase (LDH), blood urea nitrogen (BUN), creatinine, and potassium had no significant relation to HTG (Sup. Fig. 4).

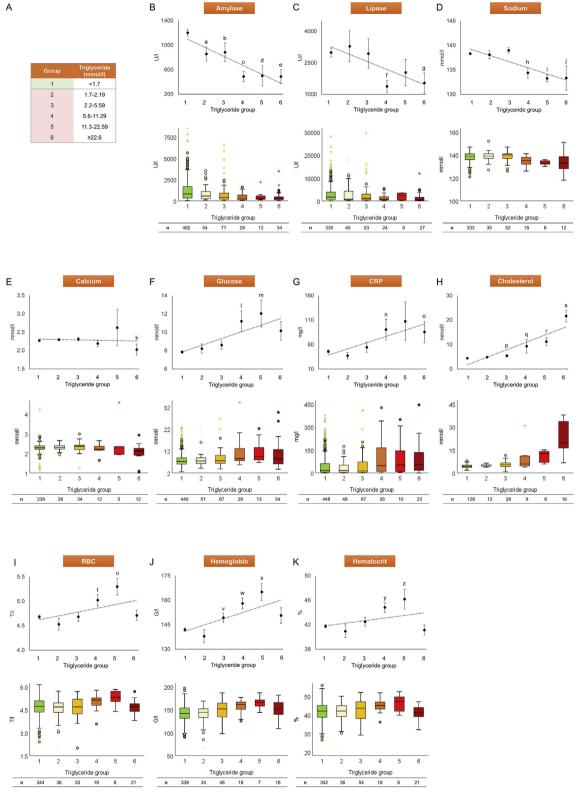


Fig. 4. Laboratory parameters on admission significantly associated with hypertriglyceridemia. A) Triglyceride groups [1-6]. B) Amylase (U/I) (a: p=0.036; b, c, e: p=<0.001; d: p=0.009). C) Lipase (U/I) (f: p=0.017; g: p=0.001). D) Sodium (mmol/I) (h, i: p=<0.001; j: p=0.005). E) Calcium (mmol/I) (k: p=0.012). F) Glucose (mmol/I) (l, m: p=<0.001). G) C-reactive protein (CRP, mg/I) (n: p=0.021; o: p=0.014). H) Cholesterol (mmol/I) (p: p=0.008; q: p=0.006; r, s: p<0.001). I) Red blood cell count (RBC, T/I) (t: p=0.017; u: p=0.004). J) Hemoglobin (G/I) (v: p=0.008; w: p<0.001; x: p=0.002). K) Hematocrit (%) (y: p=0.009; z: p=0.014). N numbers (n) indicate the total number of cases in each triglyceride group.

The rate of local complications, including peripancreatic fluid collection, pancreatic necrosis and DM, was significantly and dose-dependently increased with TG level (Fig. 5B–E); however, pancreatic pseudocysts did not show significant differences between the investigated groups above 2.2 mmol/l (Fig. 5F). Organ failure, including heart and renal failure, and maximum CRP level were significantly and dose-dependently raised by TG level (Fig. 6B, D-G); however maximum WBC has not shown any significant differences by HTG (Fig. 6C).

As regards severity, TG level above 11.3 mmol/l was associated with a significantly higher rate of moderately severe AP and longer hospital stay, whereas TG level above 22.6 mmol/l was significantly related to severe AP as well (Fig. 7A and B). Due to the low event rate, the effect of HTG on mortality could not be determined (Fig. 7A). Detailed values of charts and statistical parameters are shown in Tables S2 and S3.

Plasmapheresis was carried out in 36.4% (20/55) of the HTG-AP cases; 85% of these patients had an initial TG level higher than 22.6 mmol/l and the average TG level was 70.1 ± 10.0 mmol/l.

Discussion

HTG-AP has grown in incidence and importance. According to the previously published literature [7,9], HTG is the third most common cause of AP (7.7%). However, it seems more than likely that the incidence of HTG-AP is higher than is usually recorded. The prospective multicenter, international AP cohort run by the HPSG revealed that TG measurement is performed in just 50% (716/1435) of AP cases within the first three days from admission and most probably this rate is even worse in centers which provide no data. Furthermore, our data also confirmed additional etiological factors (alcohol and biliary disease) besides HTG in 43.6% of HTG-AP cases and showed a dose-dependent relation between obesity (body mass index), pre-existing DM and HTG. These data also suggest a higher incidence rate since physicians finding an etiological factor behind AP usually stop further investigation. Our data are in accordance with Scherer et al. who recommend that HTG-AP should be suspected in the case of significant alcohol consumption, poorly controlled DM and metabolic syndrome, including obesity [4]. Although our data clearly show that biliary obstruction may be associated with HTG, serum TG was measured in just 44.3% (266/601) of the biliary AP cases. Furthermore, in the case of biliary AP, there is no recommendation for TG measurement.

Our data analysis confirmed results published by Zheng et al. [12] and Zhu et al. [8] which show that HTG is significantly linked to younger age and male gender. This is not surprising, since underlying genetic abnormalities behind HTG contribute to younger manifestation and alcohol-related HTG affects male gender and younger age more [3,4,22]. In contrast, biliary etiology is accompanied by a higher rate for female gender and older population [3,23].

Diagnosing AP in the presence of HTG can be challenging due to in vitro interference between plasma TG level above 5.6 mmol/l (with grossly turbid plasma) and determination of amylase and lipase activities [24,25]. Our data confirmed a significant reduction of amylase and lipase levels with the elevation of TG. Furthermore, case reports have been published by Singh et al. [26] and Sotello et al. [27], presenting HTG-AP patients with normal amylase and lipase levels.

Our analysis has shown that local complications and organ failure were significantly increased by HTG, just as published in previous reports and a recent meta-analysis by Kiss et al. [10,13,15,28,29]. Nawaz et al. [30] confirmed that TG above 2.3 mmol/l is independently associated with persistent organ failure on a multivariate analysis controlling for age, gender, body mass index, diabetes, and alcohol etiology, whereas Szentesi et al. [31] revealed that hyperlipidemia was an independent predictive factor for local complications and new-onset DM. Although we could not confirm a significantly higher risk of pancreatic pseudocysts in the case of TG above 2.2 mmol/l, it is well known that pseudocysts usually occur more than four weeks after the onset of AP and the average hospital stay was 10.4 ± 0.3 days in our cohort [20].

Based on our data analysis, severity of AP and length of hospitalization were significantly increased by HTG [8,10,12,13,29,30,32]. Navarro et al. [33] and Goyal et al. [34] also confirmed that HTG

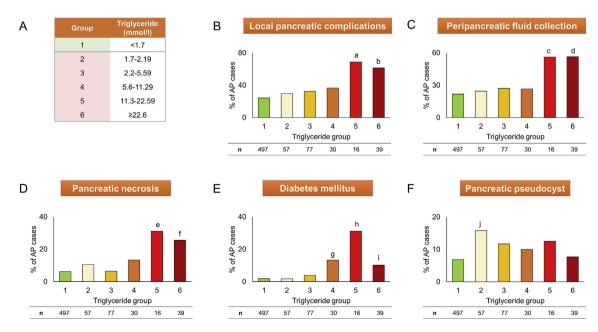


Fig. 5. Local pancreatic complications in the different triglyceride groups. A) Triglyceride groups [1-6]. B) Local pancreatic complications (a, b: p < 0.001). C) Peripancreatic fluid collection (c: p = 0.004; d: p < 0.001). D) Pancreatic necrosis (e: p = 0.003; f: p < 0.001). E) Diabetes mellitus as complication (g: p = 0.004; h: p < 0.001; i: p = 0.011). F) Pancreatic pseudocyst (j: p = 0.031). N numbers (n) indicate the total number of cases in each triglyceride group.

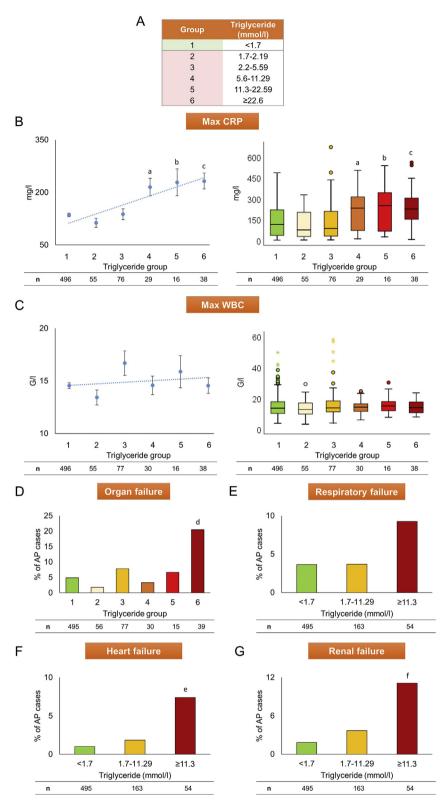
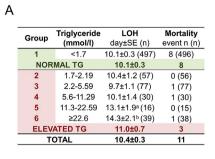
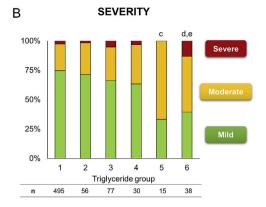




Fig. 6. Systemic inflammatory effect and organ failure in the different triglyceride groups. A) Triglyceride groups [1-6]. B) Maximum C-reactive protein (Max CRP, mg/l) (a, c: p < 0.001; b: p = 0.029). C) Maximum white blood cell count (Max WBC, G/l). D) Organ failure (d: p = 0.001). E) Respiratory failure. F) Heart failure (e: p = 0.007). G) Renal failure (f: p = 0.002). N numbers (n) indicate the total number of cases in each triglyceride group.

aggravates the severity of AP compared to biliary and alcoholic etiology, respectively. The underlying mechanism is clearly complex. Unsaturated free fatty acids (UFAs) generated from TG are

responsible for cell injury by membrane lipid peroxidation, long-lasting cytosolic Ca^{2+} elevation and mitochondrial damage [35,36]. In the case of additional alcohol consumption, non-

Fig. 7. Outcomes in the different triglyceride (TG) groups. A) Length of hospitalization (LOH, day) and mortality (event n) (a: p = 0.034; b: p = 0.001). B) Severity (c: p = 0.001; d: p < 0.001). Moderately severe acute pancreatitis (AP) cases (Group 1: 22.6% (95% CI: 19%–26.6%); Group 5: 66.7% (95% CI: 38.4%–88.2%); Group 6: 47.4% (95% CI: 31.0%–64.2%)). Severe AP cases (e: p = 0.006). N numbers (n) indicate the total number of cases in each triglyceride group.

oxidative ethanol metabolites (fatty acid ethyl esters, FAEEs) contribute to the persistent Ca²⁺ elevation and drop of ATP level [37,38]. Besides, the raised plasma viscosity caused by hyperchylomicronemia leads to ischemia and acidosis in the pancreatic capillaries [5]. This pathologic environment results in an early trypsinogen activation and pancreatic lipase leakage, leading to further free fatty acid (FFA) release and accumulation [5,35,39]. Moreover, UFAs bring about a systemic pro-inflammation by increased mRNA production of tumor necrosis factor-alpha (TNF-α) and neutrophil chemoattractants, thereby increasing the severity of AP [36]. In our cohort, heart rate and maximum CRP were significantly raised by HTG, confirming the systemic inflammatory effect of relatively high TG level. In contrast, Pothoulakis et al. [40] and Balachandra et al. [41] reported that HTG does not worsen severity. Furthermore, Wang et al. showed that longer hospital stay was associated with higher TG level, but the difference was not significant [29].

The overall mortality of AP is ~1% based on the literature [3,12] and 1.5% in our cohort, but we could not perform a further subgroup analysis because of the low event number. Zhu et al. [8] and Deng et al. [42] confirmed that HTG-AP is accompanied by a significantly higher rate of mortality among severe AP cases compared to biliary AP and non-HTG etiology, respectively. However, Tai et al. [32] showed that mortality was similar in HTG-AP and biliary AP groups in a general AP cohort.

In our cohort, plasmapheresis was carried out in 36.4% of the HTG-AP cases. Although our data clearly suggest that the severity of AP is significantly elevated above 11.3 mmol/l TG level, the average TG level was 70.1 ± 10.0 mmol/l in patients with plasmapheresis and 85% of these cases had a TG level over 22.6 mmol/l. We could not state any further conclusion regarding the therapy because of incomplete data and lack of randomization as a result of the cohort feature of the dataset. Overall, in most cases, TG-lowering therapy, such as plasmapheresis and glucose-heparin-insulin (GLU-HEP-INS) administration, is performed above a TG level of 40 mmol/l. In order to solve this unmet need, the HPSG has initiated a prospective randomized clinical trial to investigate different lipid-lowering therapies in AP [43].

Our study has several limitations. Although all data were collected prospectively, all questions were raised retrospectively. Cases were included into the analysis with TG measurement within the first three days from admission, but unfortunately still just 50% of the entire cohort met the inclusion criteria. We attempted to minimize these limitations by comparing the epidemiological and major outcome distributions of the data analyzed and the whole cohort. We confirmed that the population under investigation

represents a normal AP cohort.

Conclusion

Our results confirm that HTG dose-dependently increases the complications and severity of AP and highlights the necessity of better awareness of an accurate determination of causative and influencing risk factors in AP regardless of the etiology. Our data suggest that lipid-lowering therapy may be important clinically at a much lower TG level than we previously thought.

Declaration of competing interest

The authors declare that the research was conducted in the absence of any conflict of interest.

Acknowledgements

The research was supported by Project Grants (K131996 to PH, FK131864 to AM, FK124632 to BCN and K120335 to TT) of the National Research Development and Innovation Office, an Economic Development and Innovation Operative Programme Grant (GINOP 2.3.2-15-2016-00048 to PH), a Human Resources Development Operational Programme Grant (EFOP-3.6.2-16-2017-00006 to PH), János Bolyai Research Scholarship of the Hungarian Academy of Sciences (to AP) and ÚNKP-19-4 New National Excellence Program of the Ministry of Human Capacities (to AP).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.pan.2020.03.018.

References

- [1] Ford ES, Li C, Zhao G, Pearson WS, Mokdad AH. Hypertriglyceridemia and its pharmacologic treatment among US adults. Arch Intern Med 2009;169(6): 572–8
- [2] Laufs U, Parhofer KG, Ginsberg HN, Hegele RA. Clinical review on triglycerides. Eur Heart J 2019. https://doi.org/10.1093/eurheartj/ehz778. epub ahead of print.
- [3] Yadav D, Lowenfels AB. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013;144(6):1252–61.
- [4] Scherer J, Singh V, Pitchumoni C, Yadav D. Issues in hypertriglyceridemic pancreatitis-an update. J Clin Gastroenterol 2014;48(3):195.
- [5] Yadav D, Pitchumoni C. Issues in hyperlipidemic pancreatitis. J Clin Gastroenterol 2003;36(1):54–62.
- [6] Berglund L, Brunzell JD, Goldberg AC, Goldberg IJ, Sacks F, Murad MH, et al. Evaluation and treatment of hypertriglyceridemia: an Endocrine Society

- clinical practice guideline. J Clin Endocrinol Metabol 2012;97(9):2969-89.
- [7] Párniczky A, Kui B, Szentesi A, Balázs A, Szűcs Á, Mosztbacher D, et al. Prospective, multicentre, nationwide clinical data from 600 cases of acute pancreatitis, PLoS One 2016;11(10):e0165309.
- [8] Zhu Y, Pan X, Zeng H, He W, Xia L, Liu P, et al. A study on the etiology, severity, and mortality of 3260 patients with acute pancreatitis according to the revised Atlanta classification in Jiangxi, China over an 8-year period. Pancreas 2017;46(4):504–9.
- [9] Roberts S, Akbari A, Thorne K, Atkinson M, Evans P. The incidence of acute pancreatitis: impact of social deprivation, alcohol consumption, seasonal and demographic factors. Aliment Pharmacol Therapeut 2013;38(5):539—48.
- [10] Zhang R, Deng L, Jin T, Zhu P, Shi N, Jiang K, et al. Hypertriglyceridaemiaassociated acute pancreatitis: diagnosis and impact on severity. HPB 2019;21(9):1240–9.
- [11] Khatua B, El-Kurdi B, Singh VP. Obesity and pancreatitis. Curr Opin Gastroenterol 2017:33(5):374–82.
- [12] Zheng Y, Zhou Z, Li H, Li J, Li A, Ma B, et al. A multicenter study on etiology of acute pancreatitis in Beijing during 5 years. Pancreas 2015;44(3):409–14.
- [13] Kiss L, Für G, Mátrai P, Hegyi P, Ivány E, Cazacu IM, et al. The effect of serum triglyceride concentration on the outcome of acute pancreatitis: systematic review and meta-analysis. Sci Rep 2018;8(1):14096.
- [14] Czakó L, Szabolcs A, Vajda Á, Csáti S, Venglovecz V, Rakonczay Jr Z, et al. Hyperlipidemia induced by a cholesterol-rich diet aggravates necrotizing pancreatitis in rats. Eur J Pharmacol 2007;572(1):74–81.
- [15] Wang Q, Wang G, Qiu Z, He X, Liu C. Elevated serum triglycerides in the prognostic assessment of acute pancreatitis. J Clin Gastroenterol 2017;51(7): 586–93
- [16] Yang N, Li B, Pan Y, Tu J, Liu G, Lu G, et al. Hypertriglyceridaemia delays pancreatic regeneration after acute pancreatitis in mice and patients. Gut 2019;68(2):378–80.
- [17] IAP WG, Guidelines AAP. IAP/APA evidence-based guidelines for the management of acute pancreatitis. Pancreatology 2013;13(4):e1–15.
- [18] Hritz I, Czakó L, Dubravcsik Z, Farkas G, Kelemen D, Lásztity N, et al. Acute pancreatitis. Evidence based management guidelines of the Hungarian Pancreatic Study Group. Orv Hetil 2015;156(7):244–61.
- [19] Yokoe M, Takada T, Mayumi T, Yoshida M, Isaji S, Wada K, et al. Japanese guidelines for the management of acute pancreatitis: Japanese Guidelines 2015. J Hepato-Biliary-Pancreatic Sci 2015;22(6):405–32.
- [20] Banks PA, Bollen TL, Dervenis C, Gooszen HG, Johnson CD, Sarr MG, et al. Classification of acute pancreatitis—2012: revision of the Atlanta classification and definitions by international consensus. Gut 2013;62(1):102—11.
- [21] Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 1987;40(5):373–83.
- [22] Wilsnack RW, Wilsnack SC, Kristjanson AF, Vogeltanz-Holm ND, Gmel G. Gender and alcohol consumption: patterns from the multinational GENACIS project. Addiction 2009;104(9):1487–500.
- [23] Van Geenen EJ, Van der Peet DL, Bhagirath P, Mulder CJ, Bruno MJ. Etiology and diagnosis of acute biliary pancreatitis. Nat Rev Gastroenterol Hepatol 2010;7(9):495.
- [24] Yourno J, Henry JB. Rapid amylase and lipase determinations by nephelometry. Am J Clin Pathol 1978;70(1):56–63.
- [25] Fallat RW, Vester JW, Glueck CJ. Suppression of amylase activity by hypertriglyceridemia. Jama 1973;225(11):1331–4.
- [26] Singh A, Shrestha M, Anand C. Acute pancreatitis with normal amylase and

- lipase—an ED dilemma. Am J Emerg Med 2016;34(5):940. e5-. e7.
- [27] Sotello D, Rivas AM, Nugent KM, editors. Newly diagnosed acromegaly presenting with hypertriglyceridemic pancreatitis with normal amylase and lipase levels. Baylor University Medical Center Proceedings. Taylor & Francis; 2014
- [28] Baranyai T, Terzin V, Vajda Á, Wittmann T, Czakó L. Hypertriglyceridemia causes more severe course of acute pancreatitis. Clin Lipidol 2012;7(6):731–6.
- [29] Wang S-H, Chou Y-C, Shangkuan W-C, Wei K-Y, Pan Y-H, Lin H-C. Relationship between plasma triglyceride level and severity of hypertriglyceridemic pancreatitis. PloS One 2016;11(10):e0163984.
- [30] Nawaz H, Koutroumpakis E, Easler J, Slivka A, Whitcomb DC, Singh VP, et al. Elevated serum triglycerides are independently associated with persistent organ failure in acute pancreatitis. Am J Gastroenterol 2015;110(10):1497.
 [31] Szentesi A, Párniczky A, Vincze A, Bajor J, Gódi S, Sarlos P, et al. Multiple hits in
- [31] Szentesi A, Párniczky A, Vincze A, Bajor J, Gódi S, Sarlos P, et al. Multiple hits in acute pancreatitis: components of metabolic syndrome synergize each other's deteriorating effects. Front Physiol 2019;10:1202.
- [32] Tai W-P, Lin X-C, Liu H, Wang C-H, Wu J, Zhang N-W, et al. A retrospective research of the characteristic of hypertriglyceridemic pancreatitis in Beijing, China. Gastroenterol Res Pract 2016;2016.
- [33] Navarro S, Cubiella J, Feu F, Zambon D, Fernandez-Cruz L, Ros E. Hypertriglyceridemic acute pancreatitis. Is its clinical course different from lithiasic acute pancreatitis? Med Clínica 2004;123(15):567–70.
- [34] Goyal H, Smith B, Bayer C, Rutherford C, Shelnut D. Differences in severity and outcomes between hypertriglyceridemia and alcohol-induced pancreatitis. N Am J Med Sci 2016;8(2):82.
- [35] Yang F, Wang Y, Sternfeld L, Rodriguez J, Ross C, Hayden M, et al. The role of free fatty acids, pancreatic lipase and Ca2+ signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipase-deficient mice. Acta Physiol 2009;195(1):13–28.
- [36] Navina S, Acharya C, DeLany JP, Orlichenko LS, Baty CJ, Shiva SS, et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci Transl Med 2011;3(107). 107ra10-ra10.
- [37] Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. Phil Trans Biol Sci 2016;371(1700):20150425.
- [38] Hegyi P, Petersen OH. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology. In: Reviews of physiology, biochemistry and pharmacology, vol. 165. Springer; 2013. p. 1–30.
- [39] Kimura W, Mössner J. Role of hypertriglyceridemia in the pathogenesis of experimental acute pancreatitis in rats. Int J Gastrointest Canc 1996;20(3): 177–84
- [40] Pothoulakis I, Paragomi P, Archibugi L, Tuft M, Talukdar R, Kochhar R, et al. Clinical features of hypertriglyceridemia-induced acute pancreatitis in an international, multicenter, prospective cohort (APPRENTICE consortium). Pancreatology 2020;20(3):325–30.
- [41] Balachandra S, Virlos I, King N, Siriwardana H, France M, Siriwardena A. Hyperlipidaemia and outcome in acute pancreatitis. Int J Clin Pract 2006;60(2):156–9.
- [42] Deng L-H, Xue P, Xia Q, Yang X-N, Wan M-H. Effect of admission hypertriglyceridemia on the episodes of severe acute pancreatitis. World J Gastroenterol: WJG 2008;14(28):4558.
- [43] Zádori N, Gede N, Antal J, Szentesi A, Alizadeh H, Vincze Á, et al. EarLy elimination of fatty acids iN hypertriglyceridemia-induced acuTe pancreatitis (ELEFANT trial): protocol of an open-label, multicenter, adaptive randomized clinical trial. Pancreatology 2019;20(3):369–76.

II.

Submit a Manuscript: http://www.wjgnet.com/esps/ Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx DOI: 10.3748/wjg.v23.i6.957 World J Gastroenterol 2017 February 14; 23(6): 957-963 ISSN 1007-9327 (print) ISSN 2219-2840 (online) © 2017 Baishideng Publishing Group Inc. All rights reserved.

MINIREVIEWS

Restoration of energy level in the early phase of acute pediatric pancreatitis

Dóra Mosztbacher, Nelli Farkas, Margit Solymár, Gabriella Pár, Judit Bajor, Ákos Szűcs, József Czimmer, Katalin Márta, Alexandra Mikó, Zoltán Rumbus, Péter Varjú, Péter Hegyi, Andrea Párniczky

Dóra Mosztbacher, First Department of Pediatrics, Semmelweis University, 1083 Budapest, Hungary

Dóra Mosztbacher, Nelli Farkas, Margit Solymár, Katalin Márta, Alexandra Mikó, Zoltán Rumbus, Péter Varjú, Péter Hegyi, Andrea Párniczky, Institute for Translational Medicine, University of Pécs, 7624 Pécs, Hungary

Nelli Farkas, Institute for Bioanalyses, University of Pécs, 7624 Pécs, Hungary

Gabriella Pár, Judit Bajor, József Czimmer, Department of Gastroenterology, First Department of Medicine, University of Pécs, 7624 Pécs, Hungary

Judit Bajor, Péter Hegyi, Department of Translational Medicine, First Department of Medicine, University of Pécs, 7624 Pécs, Hungary

Ákos Szűcs, First Department of Surgery, Semmelweis University, 1082 Budapest, Hungary

Péter Hegyi, Hungarian Academy of Sciences - University of Szeged, Momentum Gastroenterology Multidisciplinary Research Group, 6720 Szeged, Hungary

Andrea Párniczky, Heim Pál Children's Hospital, 1089 Budapest, Hungary

Author contributions: Solymár M, Pár G, Bajor J, Szűcs Á and Czimmer J searched for the articles in Pubmed and screened them using the titles and abstracts; Márta K, Mikó A, Rumbus Z and Varjú P searched for the articles in Embase and screened them using the titles and abstracts; data was collected from the eligible papers by Mosztbacher D and Párniczky A; Farkas N performed the statistical analysis; Mosztbacher D, Hegyi P and Párniczky A drafted the manuscript.

Supported by the Hungarian Scientific Research Fund, No. K116634 to Hegyi P; and the Momentum Grant of the Hungarian Academy of Sciences, No. LP2014-10/2014 to Hegyi P.

Conflict-of-interest statement: All the authors disclaim any form of conflict of interest.

Open-Access: This article is an open-access article which was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited manuscript

Correspondence to: Andrea Párniczky, MD, Institute for Translational Medicine, University of Pécs, Szigeti út 12., II. em.,

7624 Pécs, Hungary. andrea.parniczky@gmail.com

Telephone: +36-72-536246 Fax: +36-72-536247

Received: October 3, 2016

Peer-review started: October 7, 2016 First decision: October 20, 2016 Revised: November 21, 2016 Accepted: January 11, 2017 Article in press: January 11, 2017 Published online: February 14, 2017

Abstract

Acute pancreatitis (AP) is a serious inflammatory disease with rising incidence both in the adult and pediatric populations. It has been shown that mitochondrial injury and energy depletion are the earliest intracellular events in the early phase of AP. Moreover, it has been revealed that restoration of intracellular ATP level restores cellular functions and defends the cells from death. We have recently shown in a systematic review and meta-analysis that early enteral feeding is beneficial in adults; however, no reviews are available concerning the effect of early enteral feeding in pediatric AP. In this minireview, our aim was to systematically analyse the literature on the treatment

of acute pediatric pancreatitis. The preferred reporting items for systematic review (PRISMA-P) were followed, and the question was drafted based on participants, intervention, comparison and outcomes: P: patients under the age of twenty-one suffering from acute pancreatitis; I: early enteral nutrition (per os and nasogastric- or nasojejunal tube started within 48 h); C: nil per os therapy; O: length of hospitalization, need for treatment at an intensive care unit, development of severe AP, lung injury (including lung oedema and pleural effusion), white blood cell count and pain score on admission. Altogether, 632 articles (PubMed: 131; EMBASE: 501) were found. After detailed screening of eligible papers, five of them met inclusion criteria. Only retrospective clinical trials were available. Due to insufficient information from the authors, it was only possible to address length of hospitalization as an outcome of the study. Our mini-meta-analysis showed that early enteral nutrition significantly (SD = 0.806, P = 0.034) decreases length of hospitalization compared with nil per os diet in acute pediatric pancreatitis. In this minireview, we clearly show that early enteral nutrition, started within 24-48 h, is beneficial in acute pediatric pancreatitis. Prospective studies and better presentation of research are crucially needed to achieve a higher level of evidence.

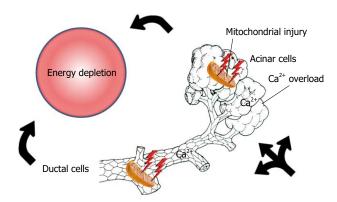
Key words: Pediatric pancreatitis; Enteral nutrition; Nil per os diet; ATP restoration; Length of hospitalization

© **The Author(s) 2017.** Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Acute pancreatitis is a serious inflammatory disease with rising incidence both in adult and pediatric medicine. Despite the existing research activities in this field, no specific therapy is available to treat this disease. Results in basic science strongly suggest that early energy restoration could be the first-line treatment for acute pancreatitis. Our minireview suggests that early enteral nutrition should have priority in the treatment of acute pediatric pancreatitis.

Mosztbacher D, Farkas N, Solymár M, Pár G, Bajor J, Szűcs Á, Czimmer J, Márta K, Mikó A, Rumbus Z, Varjú P, Hegyi P, Párniczky A. Restoration of energy level in the early phase of acute pediatric pancreatitis. *World J Gastroenterol* 2017; 23(6): 957-963 Available from: URL: http://www.wjgnet.com/1007-9327/full/v23/i6/957.htm DOI: http://dx.doi.org/10.3748/wjg.v23.i6.957

INTRODUCTION


Acute pancreatitis (AP) is a serious inflammatory disease with rising incidence both in adult and pediatric populations^[1,2]. Common characteristics in both age groups are that no specific therapy is available to

treat the disease and that the general supportive treatments at the early phase of the disease are usually volume resuscitation and a nil per os (NPO) diet^[3-6]. However, while there is clear evidence in the literature that volume therapy is beneficial, the latter treatment is questionable.

One of the main reasons for the debate is that the pathogenesis of the disease clearly suggests the opposite. Irrespective of the etiological factors, mitochondrial damage and energy depletion are the leading intracellular responses in the early phase of the disease in the exocrine pancreas^[7-10]. Bile acids^[11-14], ethanol, fatty acids and their non-oxidative metabolites, fatty acid ethyl esthers[8,9,15-18] were shown to elevate the intracellular Ca2+ concentration, causing mitochondrial damage and a resultant decrease of intracellular ATP concentration. This will lead to inhibited fluid and bicarbonate secretion and CFTR Cl channel dysfunction in the ductal cells and secretory block and intracellular trypsinogen activation in the acinar cells (Figure 1)[9,16,19,20]. Very importantly, restoration of ATP levels both in acinar and ductal cells prevents (at least in part) the toxic effects of the etiological factors^[7,21,22] noted above. These data strongly suggest that an energy supply, for example, via enteral nutrition, should be beneficial for patients as compared to nil energy.

Notably, early enteral nutrition (EEN) either via oral, nasogastric- or nasojejunal tube feeding is beneficial as regards systemic infections, complications, multi-organ failure, need for surgical interventions and mortality^[6,23-30]. Enteral nutrition has already been proven to be beneficial in other inflammatory gastrointestinal diseases. The first-line recommendation to induce remission in pediatric Crohn's disease is exclusive enteral nutrition [31]. Enteral nutrition could also be effective in the maintenance of pediatric inflammatory bowel disease remission^[32]. With regard to acute pancreatitis, three of the recent and most up-todate guidelines for acute pancreatitis in adults clearly show the positive effect of enteral nutrition in moderate and severe AP^[6,23,24]. Besides the energy supply, enteral nutrition in patients can also have other advantages as a first-line treatment for patients. It is well documented that the gut plays an important role as an immune barrier in the immune system and that EEN facilitates this barrier function. EEN significantly decreases pathogenic bacteria in the stool, alteration of intestinal flora and levels of serum endotoxins. EEN has a favourable effect on immune dysregulation caused by severe acute pancreatitis, which can reduce APACHE II scores, pancreatic sepsis, initial incidences of systemic inflammatory response syndrome (SIRS) and multiple organ dysfunction syndrome^[33,34].

Recent meta-analyses of adult data showed that EEN is beneficial in all severity groups in AP; however, no systematic review is available concerning the role of EEN in pediatrics^[35]. Therefore, the aim was to review

Figure 1 Early events in acute pancreatitis. Bile acids, ethanol, fatty acids or their non-oxidative metabolites, fatty acid ethyl esthers, induce calcium overload, causing mitochondrial damage and a resultant decrease in intracellular ATP concentration both in acinar and ductal cells. This will lead to general energy depletion in the pancreas.

the literature to analyse the effect of EEN *vs* NPO therapy on the outcome of acute pediatric pancreatitis (APP) and aggregate the information in APP leading to a higher statistical power and more robust point estimate than is possible from the individual studies.

The preferred reporting items for systematic review and meta-analysis protocol (PRISMA-P) were followed^[36]. Our structured literature search was based on the participants, intervention, comparison and outcomes format: P: patients under the age of twenty-one suffering from acute pancreatitis; I: early enteral nutrition (per os and nasogastric- or nasojejunal tube started within 48 h); C: NPO therapy [per os/nasogastric- or enteral tube after 48 h and total parenteral nutrition (TPN) within or after 48 h]; O: length of hospitalization, need for intensive care unit (ICU), complications, necessity of antibiotics, surgical/non-surgical interventions and mortality.

In February 2016, a literature search was performed on the PubMed (http://www.ncbi.nlm.nih. gov/pubmed) and EMBASE (https://www.embase.com) databases using the following Medical Subject Headings and search terms: "pediatric" OR "paediatric" AND "pancreatitis". The search was limited to human studies, full-text publications with abstracts in English with no time period, resulting in 632 articles altogether (PubMed: 131; EMBASE: 501).

The articles were checked separately. Meta-analyses, reviews, case reports and articles on chronic pancreatitis were excluded and duplicates were removed (Figure 2). Potentially eligible papers were selected, and, finally, five of them with relevant data on EEN or/with NPO therapy in acute pediatric pancreatitis in patients under twenty-one years old were included (Table 1)^[37-41]. To reduce the risk of bias, the literature search was independently performed by three researchers following the inclusion criteria noted above.

The details in the collected articles were checked, and only articles where both EEN and NPO were presented separately were used. Two articles met this

Table 1	Studies inc	luded in the	quantitative s	ynthesis
---------	-------------	--------------	----------------	----------

Data	Groups	NO. of patients
Yes	EEN	24
	NPO	14
	Only NPO	18
	Only NPO	12
	Only NPO	7
Yes	EEN + IVF lo	55
	NPO + IVF lo	20
Yes	EEN + IVF hi	96
	NPO + IVF hi	30
	Yes	Yes EEN NPO Only NPO Only NPO Only NPO Only NPO Yes EEN + IVF lo NPO + IVF lo Yes EEN + IVF hi

EEN: Early enteral nutrition; NPO: Nil per os.

criterion. The two articles contained three separate data pairs, where EEN was compared to NPO (Figure 3). The following parameters were collected: length of hospitalization (LOH), need for treatment at an ICU, development of severe AP, lung injury (including lung oedema and pleural effusion), white blood cell count and pain score on admission. Only one of the five investigated parameters (LOH) contained a minimum of three items, which were analysed statistically.

The meta-analytic calculation was made with Comprehensive MetaAnalysis (V3) software using the random effects model (the DerSimonian-Laird method). We calculated a weighted standard difference in means and 95%CI. In the case of one study (Abu-El-Haija *et al*^[37], 2016), we converted the median and range values to means and standard deviation using the modified Hozo's formula by Wan *et al*^[42]. For a visual inspection, we used a forest plot.

Figure 3 shows the parameters collected from the articles. It was only possible to perform forest plot analyses on LOH. EEN significantly decreased LOH (SD = 0.806, P = 0.034) compared to the standard NPO diet (Figure 3).

DISCUSSION

Several therapeutic recommendations are available in the literature on nutrition in acute pancreatitis. The IAP/APA guideline suggests enteral tube feeding as the first-line therapy in patients requiring nutritional support with predicted severe and severe acute pancreatitis^[6]. According to the Japanese guideline, enteral nutrition in the early phase of severe acute pancreatitis can decrease the incidence of complications and elevate the survival rate^[24]. Recent meta-analyses of adult studies revealed that EEN decreases mortality, rate of interventions and the incidence of multi-organ failure in severe acute pancreatitis. Moreover, group analyses of 17 parameters including laboratory parameters (such as CRP and white blood cells) and symptoms (such as pain or presence of SIRS) suggested that EEN also has merits in mild acute pancreatitis. Since the incidence of APP has risen in the past twenty years (with 3.6 and 13.2/100000 children affected annually), we

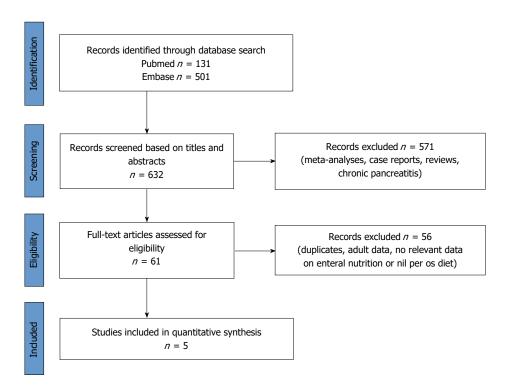


Figure 2 Flow chart on the methods used in the literature search.

Ref.	Thera	ру	n	LOF	1	Need for ICU	Severe AP	Lung injury	WBC	Pain score
Abu-El-Haija 1	EEN (< 2	24 h)	24	81.7	h			,,		
et al ^[37] , 2016	NPO (< 2	•	14	94.7						
	•	- · · ·) √F lo (< 24 h		7.1 d (1.0		0.0% (8.94 SF)	35.0% (10.7 SE) 11	13.60 (6.44 SD)	4.95 (3.75 SD)
, ,	,	/F lo (< 24 h	,	2.8 d (0.2		1.8% (1.80 SE)	•	,	,	4.62 (3.50 SD)
	,	/F hi (< 24 h	,	5.0 d (0.5		,	17.0% (6.80 SE	•	. ,	6.08 (3.19 SD)
•	,	/F hi (< 24 h	,	3.2 d (0.2		,	4.2% (2.04 SE	,	,	5.47 (3.57 SD)
Study name	Std diff in means	Standard	tistics fo Lower limit	or each st Upper limit	udy Z valud	e <i>P</i> value		Std diff in	means and 95%C	 I
Abu-El-Haija <i>et al</i> ^[37] , 2016	0.089	0.336	-0.570	0.749	0.266	0.790		-		
Szabo <i>et al</i> ^[38] , 2015 A	1.554	0.290	0.985	2.122	5.352	0.000			_	
Szabo <i>et al</i> ^[38] , 2015 B	0.739	0.214	0.319	1.159	3.447	0.001				
	0.806	0.380	0.062	1.551	2.124	0.034				-
							-2.50	1.25 PO		25 2.50 PO

Figure 3 Two articles contained three separate data pairs where early enteral nutrition was compared to nil per os. LOH: Length of hospitalization; EEN: Early enteral nutrition; NPO: Nil per os. ICU: Intensive care unit; AP: Acute pancreatitis; WBC: White blood cell count.

systematically reviewed the literature to understand whether there is any beneficial effect of EEN vs NPO in children $^{[43,44]}$.

We faced several difficulties during our review: (1) APP is still underdiagnosed, thus decreasing the possibility of performing clinical trials^[45]; (2) the number of studies on the management of these patients is very low, and there is still only a small number of studies focused on understanding the characteristics of the disease^[46]; (3) the studies have not focused on the early management of the patients; the groups

were therefore not separated; and (4) finally, but very importantly, the methods sections and the quality of data presentation in these articles are very low. Consequently, in many cases, it was impossible to obtain quality analysable data from the manuscripts for a proper broad-spectrum meta-analysis^[37-39].

By the end of the search, we identified five articles containing relevant data on nutritional management during the early phase of APP. Raizner *et al*^[39] published a retrospective analysis involving seven children with necrotizing pancreatitis. All the children received a

strict NPO diet, five patients received TPN and just one patient was treated with nasoieiunal feeding for seven days. All the children required a prolonged hospital stay (with a mean of 20 d) for acute complications, with three of them suffering from late complications^[39]. Goh et al^[40] included twelve patients in their retrospective study. One patient needed a distal pancreatectomy, and eleven patients recovered with conservative management, with none of them receiving EEN. Two patients had acute complications, and two patients had recurrent $AP^{[40]}$. Flores-Calderon *et al*^[41] studied eighteen patients with acute pancreatitis caused by L-asparaginase due to acute lymphoblastic leukemia. All the patients were treated with bowel resting for a mean of 22 d, fourteen of the patients received TPN and four had an elementary diet. Two of the patients required intensive care unit admission, with local complications developing in twelve patients. None of the patients died from complications related to AP. Although these studies point out several disadvantages of that NPO diet, none of them could be enrolled in our meta-analysis.

Finally, it was possible to collect three sets of analysable data pairs where both NPO and EEN were present. Abu-El-Haija et al^[37] conducted a prospective study of 38 children suffering from mild AP and retrospectively investigated the relationship of nutrition with pain and LOS. EEN feeding meant per os feeding and NPO was identified as oral feeding not being allowed for 24 h. Importantly, EEN, even with high fat intake, did not cause an elevation in pain in children, suggesting that EEN is a well tolerable nutritional possibility in children. The fact that LOS was much shorter in group EEN vs NPO points to EEN as a better way of treating APP^[37]. The most advanced study was performed by Szabo et al[38], where several parameters were collected to understand the effect of EEN on the course of APP. Two hundred and one children suffering from mild AP were enrolled retrospectively. They compared EEN vs NPO both with and without aggressive fluid resuscitation. Fluid therapy was administered during the first 24 h, and the type of nutrition was determined during the first 48 h. Besides the beneficial effects of EEN on LOS, they also showed that EEN reduces the severity of the disease. Although our aim was to perform a meta-analysis on several parameters to understand the differences between EEN and NPO, we were only able to perform the statistical analyses on LOS, which clearly showed that EEN is not only a safe method of nutrition but also substantially decreases LOS, resulting in a better and less expensive treatment of mild APP^[38].

CONCLUSION

The information collected by basic scientists, retrospective clinical studies and meta-analyses suggests that EEN should have priority in treating APP. However, it is perhaps self-evident that randomized multicenter clinical intervention trials would be crucial to achieving a higher level of evidence.

REFERENCES

- Peery AF, Dellon ES, Lund J, Crockett SD, McGowan CE, Bulsiewicz WJ, Gangarosa LM, Thiny MT, Stizenberg K, Morgan DR, Ringel Y, Kim HP, Dibonaventura MD, Carroll CF, Allen JK, Cook SF, Sandler RS, Kappelman MD, Shaheen NJ. Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology 2012; 143: 1179-1187.e1-3 [PMID: 22885331 DOI: 10.1053/j.gastro.2012.08.002]
- Pant C, Deshpande A, Olyaee M, Anderson MP, Bitar A, Steele MI, Bass PF, Sferra TJ. Epidemiology of acute pancreatitis in hospitalized children in the United States from 2000-2009. PLoS One 2014; 9: e95552 [PMID: 24805879 DOI: 10.1371/journal. pone.0095552]
- Párniczky A, Czakó L, Dubravcsik Z, Farkas G, Hegyi P, Hritz I, Kelemen D, Morvay Z, Oláh A, Pap Á, Sahin-Tóth M, Szabó F, Szentkereszti Z, Szmola R, Takács T, Tiszlavicz L, Veres G, Szücs Á, Lásztity N. [Pediatric pancreatitis. Evidence based management guidelines of the Hungarian Pancreatic Study Group]. Orv Hetil 2015; 156: 308-325 [PMID: 25662148 DOI: 10.1556/OH.2015.30062]
- 4 Hritz I, Czakó L, Dubravcsik Z, Farkas G, Kelemen D, Lásztity N, Morvay Z, Oláh A, Pap Á, Párniczky A, Sahin-Tóth M, Szentkereszti Z, Szmola R, Szücs Á, Takács T, Tiszlavicz L, Hegyi P. [Acute pancreatitis. Evidence-based practice guidelines, prepared by the Hungarian Pancreatic Study Group]. Orv Hetil 2015; 156: 244-261 [PMID: 25661970 DOI: 10.1556/OH.2015.30059]
- Morinville VD, Husain SZ, Bai H, Barth B, Alhosh R, Durie PR, Freedman SD, Himes R, Lowe ME, Pohl J, Werlin S, Wilschanski M, Uc A. Definitions of pediatric pancreatitis and survey of present clinical practices. *J Pediatr Gastroenterol Nutr* 2012; 55: 261-265 [PMID: 22357117 DOI: 10.1097/MPG.0b013e31824f1516]
- Working Group IAP/APA Acute Pancreatitis Guidelines. IAP/APA evidence-based guidelines for the management of acute pancreatitis. *Pancreatology* 2013; 13: e1-15 [PMID: 24054878 DOI: 10.1016/j.pan.2013.07.063]
- Maléth J, Hegyi P. Ca2+ toxicity and mitochondrial damage in acute pancreatitis: translational overview. *Philos Trans R Soc Lond B Biol Sci* 2016; 371: pii: 20150425 [PMID: 27377719 DOI: 10.1098/rstb.2015.0425]
- 8 Maléth J, Hegyi P, Rakonczay Z, Venglovecz V. Breakdown of bioenergetics evoked by mitochondrial damage in acute pancreatitis: Mechanisms and consequences. *Pancreatology* 2015; 15: S18-S22 [PMID: 26162756 DOI: 10.1016/j.pan.2015.06.002]
- 9 Hegyi P, Petersen OH. The exocrine pancreas: the acinar-ductal tango in physiology and pathophysiology. Rev Physiol Biochem Pharmacol 2013; 165: 1-30 [PMID: 23881310 DOI: 10.1007/112_ 2013_14]
- Hegyi P, Pandol S, Venglovecz V, Rakonczay Z. The acinar-ductal tango in the pathogenesis of acute pancreatitis. *Gut* 2011; 60: 544-552 [PMID: 20876773 DOI: 10.1136/gut.2010.218461]
- 11 Venglovecz V, Rakonczay Z, Ozsvári B, Takács T, Lonovics J, Varró A, Gray MA, Argent BE, Hegyi P. Effects of bile acids on pancreatic ductal bicarbonate secretion in guinea pig. *Gut* 2008; 57: 1102-1112 [PMID: 18303091 DOI: 10.1136/gut.2007.134361]
- Hegyi P. Bile as a key actiological factor of acute but not chronic pancreatitis: a possible theory revealed. *J Physiol* 2016; 594: 6073-6074 [PMID: 27800624 DOI: 10.1113/JP273108]
- 13 Venglovecz V, Hegyi P, Rakonczay Z, Tiszlavicz L, Nardi A, Grunnet M, Gray MA. Pathophysiological relevance of apical large-conductance Ca²+-activated potassium channels in pancreatic duct epithelial cells. *Gut* 2011; 60: 361-369 [PMID: 20940280 DOI: 10.1136/gut.2010.214213]
- 4 Voronina SG, Gryshchenko OV, Gerasimenko OV, Green AK, Petersen OH, Tepikin AV. Bile acids induce a cationic current, depolarizing pancreatic acinar cells and increasing the intracellular Na+ concentration. *J Biol Chem* 2005; 280: 1764-1770 [PMID: 15536077 DOI: 10.1074/jbc.M410230200]

- 15 Hegyi P, Rakonczay Z. The role of pancreatic ducts in the pathogenesis of acute pancreatitis. *Pancreatology* 2015; 15: S13-S17 [PMID: 25921231 DOI: 10.1016/j.pan.2015.03.010]
- Maléth J, Balázs A, Pallagi P, Balla Z, Kui B, Katona M, Judák L, Németh I, Kemény LV, Rakonczay Z, Venglovecz V, Földesi I, Pető Z, Somorácz Á, Borka K, Perdomo D, Lukacs GL, Gray MA, Monterisi S, Zaccolo M, Sendler M, Mayerle J, Kühn JP, Lerch MM, Sahin-Tóth M, Hegyi P. Alcohol disrupts levels and function of the cystic fibrosis transmembrane conductance regulator to promote development of pancreatitis. *Gastroenterology* 2015; 148: 427-439.e16 [PMID: 25447846 DOI: 10.1053/j.gastro.2014.11.002]
- Maléth J, Hegyi P. Calcium signaling in pancreatic ductal epithelial cells: an old friend and a nasty enemy. *Cell Calcium* 2014; 55: 337-345 [PMID: 24602604 DOI: 10.1016/j.ceca.2014.02.004]
- 18 Criddle DN. The role of fat and alcohol in acute pancreatitis: A dangerous liaison. *Pancreatology* 2015; 15: S6-S12 [PMID: 25845855 DOI: 10.1016/j.pan.2015.02.009]
- Hegyi P, Wilschanski M, Muallem S, Lukacs GL, Sahin-Tóth M, Uc A, Gray MA, Rakonczay Z, Maléth J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. *Rev Physiol Biochem Pharmacol* 2016; 170: 37-66 [PMID: 26856995 DOI: 10.1007/112 2015 5002]
- Pallagi P, Venglovecz V, Rakonczay Z, Borka K, Korompay A, Ozsvári B, Judák L, Sahin-Tóth M, Geisz A, Schnúr A, Maléth J, Takács T, Gray MA, Argent BE, Mayerle J, Lerch MM, Wittmann T, Hegyi P. Trypsin reduces pancreatic ductal bicarbonate secretion by inhibiting CFTR Cl⁻ channels and luminal anion exchangers. *Gastroenterology* 2011; 141: 2228-2239.e6 [PMID: 21893120 DOI: 10.1053/j.gastro.2011.08.039]
- 21 Judák L, Hegyi P, Rakonczay Z, Maléth J, Gray MA, Venglovecz V. Ethanol and its non-oxidative metabolites profoundly inhibit CFTR function in pancreatic epithelial cells which is prevented by ATP supplementation. *Pflugers Arch* 2014; 466: 549-562 [PMID: 23948742 DOI: 10.1007/s00424-013-1333-x]
- 22 Criddle DN, Murphy J, Fistetto G, Barrow S, Tepikin AV, Neoptolemos JP, Sutton R, Petersen OH. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. *Gastroenterology* 2006; 130: 781-793 [PMID: 16530519 DOI: 10.1053/j.gastro.2005.12.031]
- 23 Tenner S, Baillie J, DeWitt J, Vege SS. American College of Gastroenterology guideline: management of acute pancreatitis. Am J Gastroenterol 2013; 108: 1400-1415; 1416 [PMID: 23896955 DOI: 10.1038/ajg.2013.218]
- Yokoe M, Takada T, Mayumi T, Yoshida M, Isaji S, Wada K, Itoi T, Sata N, Gabata T, Igarashi H, Kataoka K, Hirota M, Kadoya M, Kitamura N, Kimura Y, Kiriyama S, Shirai K, Hattori T, Takeda K, Takeyama Y, Hirota M, Sekimoto M, Shikata S, Arata S, Hirata K. Japanese guidelines for the management of acute pancreatitis: Japanese Guidelines 2015. *J Hepatobiliary Pancreat Sci* 2015; 22: 405-432 [PMID: 25973947 DOI: 10.1002/jhbp.259]
- 25 Petrov MS, Whelan K. Comparison of complications attributable to enteral and parenteral nutrition in predicted severe acute pancreatitis: a systematic review and meta-analysis. Br J Nutr 2010; 103: 1287-1295 [PMID: 20370944 DOI: 10.1017/S0007114510000887]
- 26 Kalfarentzos F, Kehagias J, Mead N, Kokkinis K, Gogos CA. Enteral nutrition is superior to parenteral nutrition in severe acute pancreatitis: results of a randomized prospective trial. *Br J Surg* 1997; 84: 1665-1669 [PMID: 9448611]
- Abou-Assi S, Craig K, O'Keefe SJ. Hypocaloric jejunal feeding is better than total parenteral nutrition in acute pancreatitis: results of a randomized comparative study. Am J Gastroenterol 2002; 97: 2255-2262 [PMID: 12358242 DOI: 10.1111/j.1572-0241. 2002.05979.x]
- Eckerwall GE, Tingstedt BB, Bergenzaun PE, Andersson RG. Immediate oral feeding in patients with mild acute pancreatitis is safe and may accelerate recovery--a randomized clinical study. Clin Nutr 2007; 26: 758-763 [PMID: 17719703 DOI: 10.1016/j.clnu. 2007.04.007]
- 29 Li J, Xue GJ, Liu YL, Javed MA, Zhao XL, Wan MH, Chen GY, Altaf K, Huang W, Tang WF. Early oral refeeding wisdom in

- patients with mild acute pancreatitis. *Pancreas* 2013; **42**: 88-91 [PMID: 22836861 DOI: 10.1097/MPA.0b013e3182575fb5]
- 30 Petrov MS, McIlroy K, Grayson L, Phillips AR, Windsor JA. Early nasogastric tube feeding versus nil per os in mild to moderate acute pancreatitis: a randomized controlled trial. *Clin Nutr* 2013; 32: 697-703 [PMID: 23340042 DOI: 10.1016/j.clnu.2012.12.011]
- 31 Ruemmele FM, Veres G, Kolho KL, Griffiths A, Levine A, Escher JC, Amil Dias J, Barabino A, Braegger CP, Bronsky J, Buderus S, Martín-de-Carpi J, De Ridder L, Fagerberg UL, Hugot JP, Kierkus J, Kolacek S, Koletzko S, Lionetti P, Miele E, Navas López VM, Paerregaard A, Russell RK, Serban DE, Shaoul R, Van Rheenen P, Veereman G, Weiss B, Wilson D, Dignass A, Eliakim A, Winter H, Turner D. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn's disease. J Crohns Colitis 2014; 8: 1179-1207 [PMID: 24909831 DOI: 10.1016/j.crohns.2014.04.005]
- 32 Penagini F, Dilillo D, Borsani B, Cococcioni L, Galli E, Bedogni G, Zuin G, Zuccotti GV. Nutrition in Pediatric Inflammatory Bowel Disease: From Etiology to Treatment. A Systematic Review. Nutrients 2016; 8: pii: E334 [PMID: 27258308 DOI: 10.3390/nu8060334]
- 33 Capurso G, Zerboni G, Signoretti M, Valente R, Stigliano S, Piciucchi M, Delle Fave G. Role of the gut barrier in acute pancreatitis. *J Clin Gastroenterol* 2012; 46 Suppl: S46-S51 [PMID: 22955357 DOI: 10.1097/MCG.0b013e3182652096]
- 34 Flint RS, Windsor JA. The role of the intestine in the pathophysiology and management of severe acute pancreatitis. HPB (Oxford) 2003; 5: 69-85 [PMID: 18332961 DOI: 10.1080/ 13651820310001108]
- 35 Márta K, Farkas N, Szabó I, Illés A, Vincze Á, Pár G, Sarlós P, Bajor J, Szűcs Á, Czimmer J, Mosztbacher D, Párniczky A, Szemes K, Pécsi D, Hegyi P. Meta-Analysis of Early Nutrition: The Benefits of Enteral Feeding Compared to a Nil Per Os Diet Not Only in Severe, but Also in Mild and Moderate Acute Pancreatitis. *Int J Mol Sci* 2016; 17: pii: E1691 [PMID: 27775609 DOI: 10.3390/ijms17101691]
- 36 Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA; PRISMA-P Group. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. *BMJ* 2015; 349: g7647 [PMID: 25555855 DOI: 10.1136/bmj.g7647]
- 37 Abu-El-Haija M, Wilhelm R, Heinzman C, Siqueira BN, Zou Y, Fei L, Cole CR. Early Enteral Nutrition in Children With Acute Pancreatitis. *J Pediatr Gastroenterol Nutr* 2016; 62: 453-456 [PMID: 26488122 DOI: 10.1097/MPG.00000000000001013]
- Szabo FK, Fei L, Cruz LA, Abu-El-Haija M. Early Enteral Nutrition and Aggressive Fluid Resuscitation are Associated with Improved Clinical Outcomes in Acute Pancreatitis. *J Pediatr* 2015; 167: 397-402.e1 [PMID: 26210842 DOI: 10.1016/j.jpeds.2015.05.030]
- 39 Raizner A, Phatak UP, Baker K, Patel MG, Husain SZ, Pashankar DS. Acute necrotizing pancreatitis in children. *J Pediatr* 2013; 162: 788-792 [PMID: 23102790 DOI: 10.1016/j.jpeds.2012.09.037]
- 40 Goh SK, Chui CH, Jacobsen AS. Childhood acute pancreatitis in a children's hospital. Singapore Med J 2003; 44: 453-456 [PMID: 14740774]
- 41 Flores-Calderón J, Exiga-Gonzaléz E, Morán-Villota S, Martín-Trejo J, Yamamoto-Nagano A. Acute pancreatitis in children with acute lymphoblastic leukemia treated with L-asparaginase. *J Pediatr Hematol Oncol* 2009; 31: 790-793 [PMID: 19770681 DOI: 10.1097/MPH.0b013e3181b794e8]
- Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. *BMC Med Res Methodol* 2014; 14: 135 [PMID: 25524443 DOI: 10.1186/1471-2288-14-135]
- 43 Morinville VD, Barmada MM, Lowe ME. Increasing incidence of acute pancreatitis at an American pediatric tertiary care center: is greater awareness among physicians responsible? *Pancreas* 2010; 39: 5-8 [PMID: 19752770 DOI: 10.1097/MPA.0b013e3181baac47]
- 44 Lopez MJ. The changing incidence of acute pancreatitis in children: a single-institution perspective. J Pediatr 2002; 140:

622-624 [PMID: 12032533 DOI: 10.1067/mpd.2002.123880]

Zsoldos F, Párniczky A, Mosztbacher D, Tóth A, Lásztity N, Hegyi
 P. Pain in the Early Phase of Pediatric Pancreatitis (PINEAPPLE Trial): Pre-Study Protocol of a Multinational Prospective Clinical Trial. *Digestion* 2016; 93: 121-126 [PMID: 26641250 DOI:

10.1159/000441352]

46 Párniczky A, Mosztbacher D, Zsoldos F, Tóth A, Lásztity N, Hegyi P. Analysis of Pediatric Pancreatitis (APPLE Trial): Pre-Study Protocol of a Multinational Prospective Clinical Trial. *Digestion* 2016; 93: 105-110 [PMID: 26613586 DOI: 10.1159/000441353]

Published by Baishideng Publishing Group Inc 8226 Regency Drive, Pleasanton, CA 94588, USA

Telephone: +1-925-223-8242 Fax: +1-925-223-8243

E-mail: bpgoffice@wjgnet.com
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
http://www.wjgnet.com

ISSN 1007-9327

III.

Digestion

Digestion 2016;93:121-126 DOI: 10.1159/000441352

Received: July 3, 2015 Accepted after revision: September 29, 2015 Published online: December 4, 2015

Pain in the Early Phase of Pediatric Pancreatitis (PINEAPPLE Trial): Pre-Study Protocol of a **Multinational Prospective Clinical Trial**

Fanni Zsoldos^{c, e} Andrea Párniczky^{a, c} Dóra Mosztbacher^d Anna Tóth^b Natália Lásztity^c Peter Hegyi^a on behalf of the Hungarian Pancreatic Study Group and the International Association of Pancreatology

^a1st Department of Medicine, University of Szeged, MTA-SZTE Momentum Translational Gastroenterology Research Group, and ^bDepartment of Pediatrics, University of Szeged, Szeged, ^cHeim Pál Children's Hospital, Budapest, Hungary, ^dBalassa János Hospital Country of Tolna, Szekszárd, Hungary, and ^eDepartment of Pediatrics, Paracelsus Medical University, Salzburg, Austria

© Free Author Copy — for per-sonal use only

ANY DISTRIBUTION OF THIS ARTICLE WITHOUT WRITTEN **CONSENT FROM S. KARGER** AG, BASEL IS A VIOLATION OF THE COPYRIGHT.

Written permission to distribute the PDF will be granted against payment of a permission fee, which is based on the number of accesses required. Please contact permission@karger.ch

What Is Known

- AP is an underdiagnosed disease in children.
- No evidence-based guidelines are available to give proper instruction concerning the necessity of pancreatic enzyme measurement during abdominal pain.
- No large worldwide prospective clinical trials exist for understanding the most common clinical characteristics of AP.

What Is New

- A multinational prospective clinical trial is registered and open for all centers.
- This is the first large worldwide study to explore the route from the first sign of abdominal pain to the diagnosis of AP (PINEAPPLE-P).
- This trial will help to diagnose AP in a reliable and cost-efficient way.

Key Words

Pediatric pancreatitis · Acute pancreatitis · Abdominal pain · Pancreatic enzyme · Evidence-based medicine

Abstract

Background: There are unexpectedly large differences between the incidences of acute pancreatitis (AP) as indicated by different hospitals. Retrospective studies suggest that the reason behind this is the large differences that exist between the local managements of abdominal pain at emergency units. Unfortunately, no evidence-based medicine (EBM) guidelines are available to give proper instruction concerning the necessity of serum pancreatic enzyme measurement during abdominal pain. Summary: Pain in Early Phase of Pediatric Pancreatitis (PINEAPPLE) is an observational, multinational observational clinical trial to explore the route from the first sign of abdominal pain to the diagnosis of pancre-

Péter Hegyi, MD, PhD, DSc

6720 Szeged (Hungary)

University of Szeged Korányi fasor 8

E-Mail hegyi.peter@med.u-szeged.hu

Professor of Medicine, 1st Department of Medicine

KARGER

atitis (PINEAPPLE trial). The PINEAPPLE-R subtrial is a retrospective review on the records of children (patients under 18) appearing at emergency units – a review of their clinical symptoms, results of imaging examinations and laboratory parameters. The PINEAPPLE-P subtrial is a prospective trial designed to develop a fast and simple EBM guideline that helps to evaluate (in a reliable and cost-efficient way) the necessity of pancreatic enzyme test and abdominal ultrasonography (or even computed tomography) when a child has abdominal pain. The trial has been registered at the ISRCTN registry and has received the relevant ethical approval. *Key Message:* The PINEAPPLE trial will help to recognize AP in children in a highly efficient manner.

Introduction

Several publications describe an increasing incidence of acute pancreatitis (AP) in both children and adults [1–3]. Importantly, AP became the most common reason of hospitalization in the United States in 2012 with over 270,000 discharges [4]. The reason behind the impressive incidence of AP could be either improved awareness of the disease and/or the elevated number of the new incidence [5–7].

Although two major studies have proved that the incidence of AP is not much less in children than in adults (3.6–13.2 per 100,000), the overall incidence is below 1 per 100,000 or even less worldwide [8, 9]. A retrospective trial in Pittsburgh suggested a close relationship between the number of serum amylase and lipase measurement and the rising incidence of the disease [7]. Their data showed that the increased pancreatic enzyme testing could account for 94% of the change in all AP admission, suggesting that pediatric pancreatitis is an underdiagnosed disease.

There are factors that make the diagnosis of AP challenging when it comes to ordering pancreatic enzymes: (i) abdominal pain is a common complaint in kids; 50% of the cases are in the category of pain-predominant functional gastrointestinal disorder with no significant morbidity [10], (ii) most of the hospitals cannot afford measuring serum amylase/lipase in every children having abdominal pain [10], however (iii) no evidence-based medicine (EBM) guidelines are available to give proper instruction concerning the necessity of pancreatic enzyme measurement during abdominal pain. Therefore, most of the pancreatic enzyme test ordering are based on individual experience of the clinicians. It is almost need-

less to say that international clinical observational trials are crucially needed to understand the most common clinical characteristics of AP.

The Hungarian Pancreatic Study Group (HPSG) was established in 2011 in order to improve patients' life suffering in pancreatic diseases. To achieve our aims, we (i) developed an electronic data registry and biobank for patients (www.pancreas.hu), (ii) published the currently available EBM guidelines [11–15], (iii) established specific study sessions including a pediatric session, and (iv) organized multicentre clinical trials [16, 17].

Here we propose a multicenter, clinical trial called PINEAPPLE (Pain in Early Phase of Pediatric Pancreatitis), which is open to all institutions to join in. The trial protocol aims at exploring the route from the first sign of abdominal pain to the diagnosis of pancreatitis in a retrospective (PINEAPPLE-R) and prospective (PINEAPPLE-P) way.

Methods

Preliminary Settings

The study has been initiated and drafted by the HPSG. The protocols have been introduced in our latest international meeting held in Szeged in November 2014 (http://pancreas.hu/sites/info/files/conferences/ALPD2014-Program.pdf), which was attended by some of the well-established pediatric pancreatologists. Around 100 clinicians – 60 Hungarians and 40 international (from 9 different countries) investigators attended. The trial has been discussed and the suggested modifications have been included. The study has been discussed and accepted by the scientific committee of the International Association of Pancreatology (IAP), and therefore, it is running under the auspices of HPSG and IAP

Ethical Issues

The studies have received the relevant ethical approval (No.: ad.52857-2/2014) issued by the National Hungarian Ethical Authority (ETT TUKEB). Study management will strictly follow the Ethical Guidelines for Observational Studies.

Trial Registration

The PINEAPPLE trial has been registered at the ISRCTN registry (ISRCTN35618458), which is a primary clinical trial registry recognized by WHO and ICMJE, which accepts all clinical research studies, providing content validation and curation and the unique identification number necessary for publication.

Centers throughout the world are welcome to participate in the PINEAPPLE trial. 'Online Call for Centers' will be available at http://www.pancreas.hu/en/studies/pineapple. Completion of the 'LETTER OF INTENT' form will be mandatory for registering participation of each institution. HPSG will acknowledge receipt of the 'LETTER OF INTENT' form and will contact centers providing them with additional study information.

Patients and Centers Involved in the Trial

The PINEAPPLE trial is divided into 2 subtrials.

The aim of PINEAPPLE-R is a retrospective review on records of children (patients under 18) appearing at emergency units in one or two months depending on the size of the center; the review is centered around their clinical symptoms, results of imaging examinations and laboratory parameters.

The aim of PINEAPPLE-P is to provide a fast, simple and authentic system that helps to evaluate (in a reliable and cost-efficient way) the necessity of pancreatic enzyme test and abdominal ultrasonography (or even computed tomography) when a child has abdominal pain.

For the PINEAPPLE-R subtrial, we aim to collect around 1,000–2,000 cases (appearing in the ER unit with any kind of reasons/symptoms) from each center. Preliminary data suggested that around 5–10% of children admitted to the ER unit have abdominal pain. Therefore, per center, we expect around 100–200 cases with abdominal pain. Altogether, we wish to collect around 20,000 cases with abdominal pain within 3 years.

The PINEAPPLE-P is for patients under 18 years old appearing at ER unit with a leading symptom of abdominal pain. Our aim was to collect around 100 cases from each center. Altogether we wish to collect around 20,000 cases with abdominal pain within 3 years (http://www.pancreas.hu/en/studies/pineapple).

Protocol for Retrospective Data Collection for PINEAPPLE-R

This is a pure retrospective review of electronic computerized records of the relevant centers. Diagnosis and data concerning basic clinical symptoms (abdominal pain [yes/no], vomiting [yes/ no], nausea [yes/no]) are required for all patients appearing on the ER unit. A diagnosis of abdominal pain is decided based on the doctor's opinion/record. If the patient has abdominal pain, information about the imaging examination of the pancreas (yes/no, if yes: positive/negative for pancreatitis) and laboratory parameters pancreatic enzyme measurements (either amylase or lipase, yes/ no, if yes whether it is increased with 3x) are obligatory. Where data are available, information concerning the experience of the doctor in charge needs to be given (experienced doctor: at least 10 years experience with board certification, beginner: others). The information is collected into a uniform harmonized excel sheet that can be downloaded from the study website (http://pancreas. hu/en/studies/pineapple).

Inclusion Criteria for PINEAPPLE-R

- Under 18 years old
- · Accurate electronic data mentioned in the protocol

Exclusion Criteria for PINEAPPLE-R

- Above 18 years old
- Inaccurate electronic data mentioned in the protocol

Protocol for Prospective Data Collection for PINEAPPLE-P
The PINEAPPLE-P subtrial has a questionnaire style data-collection method. The form is available on the web system http://www.pancreas.hu/en/studies/pineapple (table 1). The patients and parents have to be informed accordingly. The 'informed consent form' needs to be signed and the 'Questionnaire' needs to be filled out. Four quality control points are established. First, the local clinical research assistant must upload the data electronically and confirm that the data are the same as those in the hard

copy. Second, the local institutional principal investigator (who has to have a medical doctoral degree) must recheck the uploaded data and confirm their validity and accuracy. Third, the central data administrator, who is based at the headquarters of HPSG, must control the accuracy and finally, the trial leader must go through the details. Patients with inadequate or insufficient data will be excluded.

Inclusion Criteria for PINEAPPLE-P

- Under 18 years old
- The leading symptom is acute abdominal pain

Exclusion Criteria for PINEAPPLE-P

- Above 18 years old
- No or chronic abdominal pain

Statistical Analyses

Patients data will be analyzed in 4 different age categories (0–6, 6–10, 10–16, 16–18 years). Association between each collected parameters (medical history, symptoms, etc.) and AP will be determined. Statistical analysis will be carried out by data mining methods. The applied methods will be determined based on the main characteristics of the collected data, and the most suitable method – or method combination – will be chosen. The following data mining methods are being contemplated: logistic regression, discriminant analysis, random forest analysis, decision tree, cluster analysis. ROC analysis and/or confusion matrix will be performed to evaluate the predictive power of the classification algorithm.

Expected Results

PINEAPPLE-R study will help to understand our current clinical practice on patients with abdominal pain in different countries and centers. The PINEAPPLE-P study will help to establish an EBM guideline, which will help to provide a fast, simple and authentic system to evaluate (in a reliable and cost-efficient way) the necessity of the pancreatic enzyme test and abdominal ultrasonography when a child has abdominal pain.

Authorship Policy

In order to give appropriate credit to each investigator/center, we will use standardized authorship policy. Concerning the PINEAPPLE-R subtrial: under 1,500 patients will generate 1, whereas above 1,500 patients will generate maximum of 2 coauthors from the center PINEAPPLE-P: every 100 patients will generate 1 co-author. All other investigators/contributors who do not meet the criteria for authorship will be listed in an 'Acknowledgements' section. For example, those who provide purely technical help or a department chair who provided only general support will appear in this section.

Discussion

The 2 out of 3 criteria rule is used to dianose AP both in adults and children [9, 11, 13]. Two of the following parameters are required: (1) abdominal pain, (2) serum amylase and/or lipase values \geq 3 times upper limits of

123

oaded by: S. BASEL

Table 1. Summary of clinical data required for PINEAPPLE-P

1. Patient personal details Gender Ethnicity/race	Male/female White/Black/Asian-Indian/not known
2. Details from the medical history (a) Family medical history Pancreas disorders in family history: AP/CP/AIP/PC	Yes/no, if yes: relationship to patient
(b) Medical history of the child Known diseases Abdominal surgery New medications taken in the last 2 weeks New symptoms in the last 2 weeks New diet, change in diet in the last 2 weeks Any event strongly affecting the child emotionally in the last 2 weeks Any event strongly affecting the child emotionally in the last 2 weeks Change in the environment of the child in the last 2 weeks Was there any examination concerning abdominal pain?	Yes/no, if yes: description of the disease Yes/no, if yes: description of the disease Yes/no, if yes: description of them Yes/no, if yes: description of them Yes/no, if yes: description of it
Length of breast milk feeding	Number of months
3. Complaints, symptoms (a) Abdominal pain How many hours have passed since the pain started? How long did it last? Intensity on a 1–10 scale Intensity Forced posture Nature Location	Number of hours Number of hours Number Decreasing/intensifying/stagnating Yes/no Dull/sharp/cramping Diffuse/localized
(b) In case of abdominal pain longer than 48 h Was the everyday activity influenced? Did the child wake up at night because of the pain? Which part of the day the pain appeared mostly? Was it connected to eating? Subfebrility, fever	Yes/no Yes/no After waking up/in the morning/in the Afternoon/in the evening/at night Yes/no Before eating/while eating/after eating
(c) Other complains Nausea Vomiting Subfebrility, fever Appetite Weight loss Jaundice Stool	Yes/no Yes/no, if yes: how many times?, and content of cast Yes/no, if yes: since when? Temperature Good/retained/bad Yes/no, if yes: how much? (kg), how long did it take? (weeks Yes/no, if yes: since when? Normal/diarrhea/constipation/fatty/putrid/undigested food bloody/mucus
4. Admission details, status Blood pressure, mm Hg, heart rate, /min Body weight, kg, body height, m Respiratory rate, /min Body temperature, °C Abdominal tenderness Abdominal guarding Jaundice Bowel sounds	Number Number Number Number Number Yes/no, location of abdominal tenderness Yes/no Yes/no No/hypoactive/normal/hyperactive
5. Laboratory parameters Amylase and/or lipase, U/l	

Table 1. (continued)

6. Imaging examinations at admission Pancreas deviation suggesting AP Pancreas deviation suggesting CP	Yes/no Yes/no
7. Diagnosis	
8. Diagnosis – main group	Unknown, autoimmun, cardiology, dermatology, endocrinology, gastroenterology, etc.
9. What happened with the patient?	Admission to an inpatient department/went home/other

normal, (3) characteristic imaging finding for AP. Therefore, without measuring serum pancreatic enzymes and/ or performing either transabdominal ultrasonograpy or CT, AP cannot be diagnosed. According to previous pediatric studies in AP, abdominal pain is present in 66 to 95% of the children with AP [18-24]; however, inconsistency and high variability exist between the studies. Most of the trials investigating the characteristics of abdominal pain have either low numbers or missing parameters causing inconsistencies between their data. Abdominal pain was most commonly localized to the epigastric region (62–89% of cases) [18, 25, 26] and was rarely associated with back pain (<10%) [20, 24]. Radiation to the back was only in 1.6-5.6% [22, 23, 26] of the cases. Diffuse abdominal pain was reported in 12-20% of patients [18, 22, 23], guarding at 29–37% [18, 20], whereas nausea or vomiting was found in 40–80% of patients [21–29]. A clinical study from Mexico described ileus at just under 50% of the children [27]. Abdominal distension was reported in 21-46% of the patients [18-22]. Other symptoms might be fever, ascites, pleural effusion and jaundice. Palpable abdominal mass was reported in a quarter of the patients in a study from Taiwan [26]. Symptoms of infants and toddlers are much more unspecific: fever with abdominal pain is found in 43%, epigastric tenderness in 57%, nausea in 29% [25]. In a study from Pittsburgh, 16% of the infants and toddlers had abdominal distension and 40% had fever [30]. Therefore, it is almost needless to say that a large international prospective cohort is necessary to understand the complaints and symptoms of AP in children.

In summary, here we propose an international observational clinical trial (PINEAPPLE) to collect a critical mass of clinical data from children with abdominal pain in order to develop EBM guidelines concerning the necessity for obtaining serum pancreatic enzyme testing and pancreatic imaging in pediatric patients who present to the emergency room with abdominal pain.

Acknowledgments

This study was supported by the MTA-SZTE Momentum Grant (LP2014-10/2014). The authors are grateful for the useful advice and suggestions of the international experts who attended the 3rd HPSG meeting in November 2014, especially to Maisam Abu-El-Haija (USA), Mark Lowe (USA), Grzegorz Oracz (Poland), Jonas, Rosendahl (Leipzig, Germany), Miklós Sahin-Tóth (Boston, USA), Aliye Uc (USA), Heiko Witt (Germany) and David Whitcomb (Pittsburgh, USA). We are also thankful for the administrative help of Andrea Szentesi and Péter Nagy.

Disclosure Statement

All authors disclose any sponsorship or funding arrangements relating to their research and disclose any possible conflicts of interest

Authors' Contributions

P.H. initiated, whereas F.Z. and P.H. drafted the study. All of the authors were involved in designing and conducting discussions on the study.

References

- 1 Satoh K, Shimosegawa T, Masamune A, Hirota M, Kikuta K, Kihara Y, Kuriyama S, Tsuji I, Satoh A, Hamada S; Research Committee of Intractable Diseases of the Pancreas: Nationwide epidemiological survey of acute pancreatitis in Japan. Pancreas 2011;40:503–507.
- 2 Yadav D, Lowenfels AB: Trends in the epidemiology of the first attack of acute pancreatitis: a systematic review. Pancreas 2006;33: 323–330.
- 3 Joergensen M, Brusgaard K, Crüger DG, Gerdes AM, de Muckadell OB: Incidence, prevalence, etiology, and prognosis of firsttime chronic pancreatitis in young patients: a nationwide cohort study. Dig Dis Sci 2010;55: 2988–2998.

Digestion 2016;93:121–126 125 DOI: <u>10.1159/000441352</u>

- 4 Peery AF, Dellon ES, Lund J, Crockett SD, McGowan CE, Bulsiewicz WJ, Gangarosa LM, Thiny MT, Stizenberg K, Morgan DR, Ringel Y, Kim HP, Dibonaventura MD, Carroll CF, Allen JK, Cook SF, Sandler RS, Kappelman MD, Shaheen NJ: Burden of gastrointestinal disease in the United States: 2012 update. Gastroenterology 2012;143:1179–1187.
- 5 Bai HX, Lowe ME, Husain SZ: What have we learned about acute pancreatitis in children? J Pediatr Gastroenterol Nutr 2011;52:262– 270.
- 6 Park A, Latif SU, Shah AU, Tian J, Werlin S, Hsiao A, Pashankar D, Bhandari V, Nagar A, Husain SZ: Changing referral trends of acute pancreatitis in children: a 12-year single-center analysis. J Pediatr Gastroenterol Nutr 2009:49:316–322.
- 7 Morinville VD, Barmada MM, Lowe ME: Increasing incidence of acute pancreatitis at an American pediatric tertiary care center: is greater awareness among physicians responsible? Pancreas 2010;39:5–8.
- 8 Nydegger A, Heine RG, Ranuh R, Gegati-Levy R, Crameri J, Oliver MR: Changing incidence of acute pancreatitis: 10-year experience at the royal children's hospital, Melbourne. J Gastroenterol Hepatol 2007;22: 1313–1316.
- 9 Morinville VD, Husain SZ, Bai H, Barth B, Alhosh R, Durie PR, Freedman SD, Himes R, Lowe ME, Pohl J, Werlin S, Wilschanski M, Uc A; INSPPIRE Group: Definitions of pediatric pancreatitis and survey of present clinical practices. J Pediatr Gastroenterol Nutr 2012;55:261–265.
- 10 Dhroove G, Chogle A, Saps M: A million-dollar work-up for abdominal pain: is it worth it? J Pediatr Gastroenterol Nutr 2010;51:579– 583
- 11 Hritz I, Czakó L, Dubravcsik Z, Farkas G, Kelemen D, Lásztity N, Morvay Z, Oláh A, Pap Á, Párniczky A, Sahin-Tóth M, Szentkereszti Z, Szmola R, Szücs Á, Takács T, Tiszlavicz L, Hegyi P; Magyar Hasnyálmirigy Munkacsoport, Hungarian Pancreatic Study Group: [Acute pancreatitis. Evidencebased practice guidelines, prepared by the Hungarian Pancreatic Study Group]. Orv Hetil 2015;156:244–261.

- 12 Takács T, Czakó L, Dubravcsik Z, Farkas G, Hegyi P, Hritz I, Kelemen D, Lásztity N, Morvay Z, Oláh A, Pap Á, Párniczky A, Patai Á, Sahin-Tóth M, Szentkereszti Z, Szmola R, Tiszlavicz L, Szücs Á; Magyar Hasnyálmirigy Munkacsoport: [Chronic pancreatitis. Evidence based management guidelines of the Hungarian Pancreatic Study Group]. Orv Hetil 2015;156:262–288.
- 13 Párniczky A, Czakó L, Dubravcsik Z, Farkas G, Hegyi P, Hritz I, Kelemen D, Morvay Z, Oláh A, Pap Á, Sahin-Tóth M, Szabó F, Szentkereszti Z, Szmola R, Takács T, Tiszlavicz L, Veres G, Szücs Á, Lásztity N; Magyar Hasnyálmirigy Munkacsoport Hungarian Pancreatic Study Group: [Pediatric pancreatitis. Evidence based management guidelines of the Hungarian Pancreatic Study Group]. Orv Hetil 2015;156:308–325.
- 14 Dubravcsik Z, Farkas G, Hegyi P, Hritz I, Kelemen D, Lásztity N, Morvay Z, Oláh A, Pap Á, Párniczky A, Sahin-Tóth M, Szentkereszti Z, Szmola R, Takács T, Tiszlavicz L, Szücs Á, Czakó L; Magyar Hasnyálmirigy Munkacsoport Hungarian Pancreatic Study Group: [Autoimmune pancreatitis. Evidence based management guidelines of the Hungarian Pancreatic Study Group]. Orv Hetil 2015;156:292–307.
- 15 Szmola R, Farkas G, Hegyi P, Czakó L, Dubravcsik Z, Hritz I, Kelemen D, Lásztity N, Morvay Z, Oláh A, Párniczky A, Rubovszky G, Sahin-Tóth M, Szentkereszti Z, Szücs Á, Takács T, Tiszlavicz L, Pap Á; Magyar Hasnyálmirigy Munkacsoport Hungarian Pancreatic Study Group: [Pancreatic cancer. Evidence based management guidelines of the Hungarian Pancreatic Study Group]. Orv Hetil 2015;156:326–339.
- 16 Hritz I, Hegyi P: Early achievable severity (EASY) index for simple and accurate expedite risk stratification in acute pancreatitis. J Gastrointestin Liver Dis 2015;24:177–182.
- 17 Dubravcsik Z, Madácsy L, Gyökeres T, Vincze Á, Szepes Z, Hegyi P, Hritz I, Szepes A; Hungarian Pancreatic Study Group: Preventive pancreatic stents in the management of acute biliary pancreatitis (PREPAST trial): pre-study protocol for a multicenter, prospective, randomized, interventional, controlled trial. Pancreatology 2015;15:115–123.

- 18 Berney T, Belli D, Bugmann P, Beghetti M, Morel P, LeCoultre C: Influence of severe underlying pathology and hypovolemic shock on the development of acute pancreatitis in children. J Pediatr Surg 1996;31:1256–1261.
- 19 Yeung CY, Lee HC, Huang FY, Ho MY, Kao HA, Liang DC, Hsu CH, Hung HY, Chang PY, Sheu JC: Pancreatitis in children experience with 43 cases. Eur J Pediatr 1996;155: 458–463.
- 20 Haddock G, Coupar G, Youngson GG, MacKinlay GA, Raine PA: Acute pancreatitis in children: a 15-year review. J Pediatr Surg 1994;29:719–722.
- 21 Weizman Z, Durie PR: Acute pancreatitis in childhood. J Pediatr 1988;113(1 pt 1):24–29.
- 22 Ziegler DW, Long JA, Philippart AI, Klein MD: Pancreatitis in childhood. Experience with 49 patients. Ann Surg 1988;207:257–261.
- 23 Jordan SC, Ament ME: Pancreatitis in children and adolescents. J Pediatr 1977;91:211–216.
- 24 Werlin SL, Kugathasan S, Frautschy BC: Pancreatitis in children. J Pediatr Gastroenterol Nutr 2003;37:591–595.
- 25 Park AJ, Latif SU, Ahmad MU, Bultron G, Orabi AI, Bhandari V, Husain SZ: A comparison of presentation and management trends in acute pancreatitis between infants/toddlers and older children. J Pediatr Gastroenterol Nutr 2010;51:167–170.
- 26 Tiao MM, Chuang JH, Ko SF, Kuo HW, Liang CD, Chen CL: Pancreatitis in children: clinical analysis of 61 cases in southern Taiwan. Chang Gung Med J 2002;25:162–168.
- 27 Sánchez-Ramírez CA, Larrosa-Haro A, Flores-Martínez S, Sánchez-Corona J, Villa-Gómez A, Macías-Rosales R: Acute and recurrent pancreatitis in children: etiological factors. Acta Paediatr 2007;96:534–537.
- 28 Chen CF, Kong MS, Lai MW, Wang CJ: Acute pancreatitis in children: 10-year experience in a medical center. Acta Paediatr Taiwan 2006; 47:192–196.
- 29 Goh SK, Chui CH, Jacobsen AS: Childhood acute pancreatitis in a children's hospital. Singapore Med J 2003;44:453–456.
- 30 Kandula L, Lowe ME: Etiology and outcome of acute pancreatitis in infants and toddlers. J Pediatr 2008:152:106–110.

© Free Author Copy – for personal use only

ANY DISTRIBUTION OF THIS ARTICLE WITHOUT WRITTEN CONSENT FROM S. KARGER AG, BASEL IS A VIOLATION OF THE COPYRIGHT.

Written permission to distribute the PDF will be granted against payment of a permission fee, which is based on the number of accesses required. Please contact permission@karger.ch